Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

1.1 Q-1

Questions Statement

For: (a) f(x)=x2βˆ’xf(x)=x^{2}-x (b) f(x)=x+4f(x)=\sqrt{x+4}.

Find:

  1. f(βˆ’2)f(-2),
  2. f(0)f(0),
  3. f(xβˆ’1)f(x-1),
  4. f(x2+4)f\left(x^{2}+4\right).

Solution

(a) For f(x)=x2βˆ’xf(x) = x^2 - x:

  1. Finding f(βˆ’2)f(-2):
    • We are asked to evaluate f(x)f(x) at x=βˆ’2x = -2. To do this, we substitute βˆ’2-2 into the function f(x)=x2βˆ’xf(x) = x^2 - x:
f(βˆ’2)=(βˆ’2)2βˆ’(βˆ’2)=4+2=6 f(-2) = (-2)^2 - (-2) = 4 + 2 = 6
  • Therefore, f(βˆ’2)=6f(-2) = 6.
  1. Finding f(0)f(0):
    • Next, we evaluate f(x)f(x) at x=0x = 0. Substituting 00 into the function:
f(0)=(0)2βˆ’(0)=0βˆ’0=0 f(0) = (0)^2 - (0) = 0 - 0 = 0
  • So, f(0)=0f(0) = 0.
  1. Finding f(xβˆ’1)f(x-1):
    • Now, we need to evaluate f(xβˆ’1)f(x-1), which means substituting (xβˆ’1)(x - 1) in place of xx in the function f(x)=x2βˆ’xf(x) = x^2 - x. This gives:
f(xβˆ’1)=[(xβˆ’1)2βˆ’(xβˆ’1)] f(x-1) = \left[(x-1)^2 - (x-1)\right]
  • First, expand (xβˆ’1)2(x-1)^2:
(xβˆ’1)2=x2βˆ’2x+1 (x-1)^2 = x^2 - 2x + 1
  • So, the expression for f(xβˆ’1)f(x-1) becomes:
f(xβˆ’1)=x2βˆ’2x+1βˆ’x+1=x2βˆ’3x+2 f(x-1) = x^2 - 2x + 1 - x + 1 = x^2 - 3x + 2
  • Thus, f(xβˆ’1)=x2βˆ’3x+2f(x-1) = x^2 - 3x + 2.
  1. Finding f(x2+4)f(x^2 + 4):
    • Next, we evaluate f(x2+4)f(x^2 + 4) by substituting (x2+4)(x^2 + 4) for xx in the function f(x)=x2βˆ’xf(x) = x^2 - x:
f(x2+4)=[(x2+4)2βˆ’(x2+4)] f(x^2 + 4) = \left[(x^2 + 4)^2 - (x^2 + 4)\right]
  • First, expand (x2+4)2(x^2 + 4)^2:
(x2+4)2=x4+8x2+16 (x^2 + 4)^2 = x^4 + 8x^2 + 16
  • Now substitute and simplify:
f(x2+4)=x4+8x2+16βˆ’x2βˆ’4=x4+7x2+12 f(x^2 + 4) = x^4 + 8x^2 + 16 - x^2 - 4 = x^4 + 7x^2 + 12
  • Therefore, f(x2+4)=x4+7x2+12f(x^2 + 4) = x^4 + 7x^2 + 12.

(b) For f(x)=x+4f(x) = \sqrt{x+4}:

  1. Finding f(βˆ’2)f(-2):
    • We substitute βˆ’2-2 into the function f(x)=x+4f(x) = \sqrt{x + 4}:
f(βˆ’2)=βˆ’2+4=2 f(-2) = \sqrt{-2 + 4} = \sqrt{2}
  • So, f(βˆ’2)=2f(-2) = \sqrt{2}.
  1. Finding f(0)f(0):
    • Now, we evaluate f(x)f(x) at x=0x = 0:
f(0)=0+4=4=2 f(0) = \sqrt{0 + 4} = \sqrt{4} = 2
  • Therefore, f(0)=2f(0) = 2.
  1. Finding f(xβˆ’1)f(x-1):
    • For f(xβˆ’1)f(x-1), substitute (xβˆ’1)(x - 1) in place of xx in the function f(x)=x+4f(x) = \sqrt{x + 4}:
f(xβˆ’1)=(xβˆ’1)+4=x+3 f(x-1) = \sqrt{(x-1) + 4} = \sqrt{x + 3}
  • So, f(xβˆ’1)=x+3f(x-1) = \sqrt{x + 3}.
  1. Finding f(x2+4)f(x^2 + 4):
    • For f(x2+4)f(x^2 + 4), substitute (x2+4)(x^2 + 4) in place of xx:
f(x2+4)=x2+4+4=x2+8 f(x^2 + 4) = \sqrt{x^2 + 4 + 4} = \sqrt{x^2 + 8}
  • Therefore, f(x2+4)=x2+8f(x^2 + 4) = \sqrt{x^2 + 8}.

Key Formulas or Methods Used

  • Function Evaluation: Substituting values or expressions into a function to find the result.
  • Algebraic Manipulation: Expanding and simplifying expressions, such as (xβˆ’1)2(x - 1)^2 and (x2+4)2(x^2 + 4)^2.
  • Square Root Function: Applying the square root formula for the given function f(x)=x+4f(x) = \sqrt{x+4}.

Summary of Steps

  1. For part (a), evaluate the function f(x)=x2βˆ’xf(x) = x^2 - x at the given values and expressions.
  2. For part (b), evaluate the function f(x)=x+4f(x) = \sqrt{x+4} at the specified values.
  3. Simplify the resulting expressions for f(xβˆ’1)f(x-1), f(x2+4)f(x^2+4), and other terms as needed.