Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

06_Ex 3.6

Exercise Questions

QuestionsQuestion Links
Q1. ∫12(x2+1)dx\int_{1}^{2}\left(x^{2}+1\right) d x3.6 Q-1
Q2. ∫11(x1/3+1)dx\int_{1}^{1}\left(x^{1 / 3}+1\right) d x3.6 Q-2
Q3. βˆ«βˆ’201(2xβˆ’1)2dx\int_{-2}^{0} \frac{1}{(2 x-1)^{2}} d x3.6 Q-3
Q4. βˆ«βˆ’623βˆ’xdx\int_{-6}^{2} \sqrt{3-x} \mathrm{dx}3.6 Q-4
Q5. ∫15(2tβˆ’1)3dx\int_{1}^{\sqrt{5}} \sqrt{(2 t-1)^{3}} d x3.6 Q-5
Q6. ∫25xx2βˆ’1dx\int_{2}^{\sqrt{5}} x \sqrt{\mathrm{x}^{2}-1} \mathrm{dx}3.6 Q-6
Q7. ∫12xx2+2dx\int_{1}^{2} \frac{x}{x^{2}+2} d x3.6 Q-7
Q8. ∫23(xβˆ’1x)2dx\int_{2}^{3}\left(\mathrm{x}-\frac{1}{\mathrm{x}}\right)^{2} \mathrm{dx}3.6 Q-8
Q9. βˆ«βˆ’11(x+12)x2+x+1dx\int_{-1}^{1}\left(x+\frac{1}{2}\right) \sqrt{x^{2}+x+1} \mathrm{dx}3.6 Q-9
Q10. ∫03dxx2+9\int_{0}^{3} \frac{d x}{x^{2}+9}3.6 Q-10
Q11. βˆ«Ο€6Ο€3Cos⁑tdt\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \operatorname{Cos} t \mathrm{dt}3.6 Q-11
Q12. ∫12(x+1x)12(1βˆ’1x2)dx\int_{1}^{2}\left(\mathrm{x}+\frac{1}{\mathrm{x}}\right)^{\frac{1}{2}}\left(1-\frac{1}{\mathrm{x}^{2}}\right) \quad \mathrm{dx}3.6 Q-12
Q13. ∫12ln⁑xdx\int_{1}^{2} \ln x d x3.6 Q-13
Q14. ∫02(ex/2βˆ’eβˆ’x/2)dx\int_{0}^{2}\left(e^{x / 2}-e^{-x / 2}\right) d x3.6 Q-14
Q15. ∫0Ο€4Cos⁑θ+Sin⁑θCos⁑2ΞΈdΞΈ\int_{0}^{\frac{\pi}{4}} \frac{\operatorname{Cos} \theta+\operatorname{Sin} \theta}{\operatorname{Cos} 2 \theta} d \theta3.6 Q-15
Q16. ∫0Ο€6Cos⁑3ΞΈΒ dΞΈ\int_{0}^{\frac{\pi}{6}} \operatorname{Cos}^{3} \theta \mathrm{~d} \theta3.6 Q-16
Q17. βˆ«Ο€6Ο€4Cos⁑2ΞΈCot⁑2ΞΈdΞΈ\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \operatorname{Cos}^{2} \theta \operatorname{Cot}^{2} \theta d \theta3.6 Q-17
Q18. ∫0Ο€4Cos⁑4tdt\int_{0}^{\frac{\pi}{4}} \operatorname{Cos}^{4} t d t3.6 Q-18
Q19. ∫0Ο€3Cos⁑2Sin⁑θ dΞΈ\int_{0}^{\frac{\pi}{3}} \operatorname{Cos}^{2} \operatorname{Sin} \theta \mathrm{~d} \theta3.6 Q-19
Q20. ∫0Ο€4(1+Cos⁑2ΞΈ)tan⁑2ΞΈdΞΈ\int_{0}^{\frac{\pi}{4}}\left(1+\operatorname{Cos}^{2} \theta\right) \tan ^{2} \theta d \theta3.6 Q-20
Q21. ∫0Ο€4Sec⁑θSin⁑θ+Cos⁑θdΞΈ\int_{0}^{\frac{\pi}{4}} \frac{\operatorname{Sec} \theta}{\operatorname{Sin} \theta+\operatorname{Cos} \theta} \mathrm{d} \theta3.6 Q-21
Q22. $\int_-1^5x-3
Q23. ∫1/81(x1/3+2)2x2/3dx\int_{1 / 8}^{1} \frac{\left(x^{1 / 3}+2\right)^{2}}{x^{2 / 3}} \mathrm{dx}3.6 Q-23
Q24. ∫13x2βˆ’2x+1dx\int_{1}^{3} \frac{\mathrm{x}^{2}-2}{\mathrm{x}+1} \mathrm{dx}3.6 Q-24
Q25. ∫233x2βˆ’2x+1(xβˆ’1)(x2+1)dx\int_{2}^{3} \frac{3 x^{2}-2 x+1}{(x-1)\left(x^{2}+1\right)} d x3.6 Q-25
Q26. ∫0Ο€4sin⁑xβˆ’1cos⁑2xdx\int_0^{\frac{\pi}{4}} \frac{\sin x-1}{\cos ^2 x} d x3.6 Q-26
Q27. ∫0Ο€/411+Sin⁑xdx\int_{0}^{\pi / 4} \frac{1}{1+\operatorname{Sin} \mathrm{x}} \mathrm{dx}3.6 Q-27
Q28. ∫013x4βˆ’3xdx\int_{0}^{1} \frac{3 x}{\sqrt{4-3 x}} d x3.6 Q-28
Q29. βˆ«Ο€/6Ο€/2Cos⁑xSin⁑x(2+Sin⁑x)dx\int_{\pi / 6}^{\pi / 2} \frac{\operatorname{Cos} \mathrm{x}}{\operatorname{Sin} \mathrm{x}(2+\operatorname{Sin} \mathrm{x})} \mathrm{dx}3.6 Q-29
Q30. ∫02Sin⁑x(1+Cos⁑x)(2+Cos⁑x)dx\int_{0}^{2} \frac{\operatorname{Sin} x}{(1+\operatorname{Cos} x)(2+\operatorname{Cos} x)} d x3.6 Q-30

Overview

This exercise focuses on evaluating definite integrals, a fundamental concept in calculus. The integrals involve a variety of techniques, such as basic integration rules, substitution, and algebraic manipulation. These problems are designed to build proficiency in solving real-world problems related to areas, rates, and other applications of definite integrals.


Key Concepts

  1. Definite Integrals: The evaluation of an integral over a specific interval.

    • Represented as ∫abf(x),dx\int_{a}^{b} f(x) , dx, where aa and bb are the limits of integration.
    • Provides the net area under the curve f(x)f(x) between x=ax = a and x=bx = b.
  2. Integration Techniques:

    • Basic Integration: Applying standard formulas to solve.
    • Substitution: Simplifying the integrand by introducing a new variable.
    • Algebraic Simplification: Breaking down complex expressions for easier integration.
  3. Special Cases:

    • Zero-length intervals yield zero results (e.g., ∫11f(x)dx=0\int_{1}^{1} f(x) dx = 0).
    • Symmetry in definite integrals can simplify calculations.

Important Formulas

  1. Power Rule:
    ∫xndx=xn+1n+1+C(nβ‰ βˆ’1)\int x^n dx = \frac{x^{n+1}}{n+1} + C \quad (n \neq -1)

  2. Basic Integration:
    ∫1,dx=x+C\int 1 , dx = x + C
    ∫xndx=xn+1n+1+C\int x^n dx = \frac{x^{n+1}}{n+1} + C

  3. Exponential Functions:
    ∫exdx=ex+C\int e^x dx = e^x + C

  4. Substitution Rule:
    ∫f(g(x))gβ€²(x)dx=∫f(u)du\int f(g(x)) g'(x) dx = \int f(u) du

  5. Definite Integral Evaluation:
    ∫abf(x)dx=F(b)βˆ’F(a),\int_{a}^{b} f(x) dx = F(b) - F(a),
    where F(x)F(x) is the antiderivative of f(x)f(x).


Tips and Tricks

  • Simplify the Integrand: Break down the expression using algebraic techniques before integrating.
  • Look for Symmetry: For symmetric intervals, odd functions integrate to zero, and even functions double the integral over half the interval.
  • Check Limits: For substitution, ensure the limits of integration are adjusted for the new variable.
  • Partial Fractions: Decompose complex fractions into simpler parts when necessary.

Summary

This exercise reinforces the computation of definite integrals using foundational rules and strategies. Key skills include breaking down complex integrals, recognizing patterns, and correctly applying limits to evaluate results. Mastery of these concepts enables solving practical problems in physics, engineering, and economics.


Reference

By Sir Shahzad Sair:

By Great Science Academy: