Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

02_Ex 3.2

Exercise Questions

QuestionsQuestion Links
Q1. Evaluate the following indefinite integrals.3.2 Q-1
Q2. Evaluate3.2 Q-2

Overview

This Exercise focuses on the fundamental techniques of integration, including indefinite integrals and their application to solve algebraic and trigonometric expressions. The goal is to reinforce understanding of integration formulas, substitution methods, and other problem-solving techniques for finding antiderivatives. These skills are essential for solving complex mathematical problems in calculus and beyond, including areas, volumes, and rates of change.


Key Concepts

  1. Integral and Antiderivative: The process of integration is the reverse of differentiation, where the goal is to find a function whose derivative matches the given function.
  2. Basic Integration Rules: Power rule, sum rule, and constant factor rule are critical for solving integrals systematically.
  3. Techniques:
    • Substitution: Simplifies integrals by substituting a variable to make the function easier to integrate.
    • Integration by Parts: Decomposes a product of functions into simpler parts for integration.
  4. Applications: Used to calculate areas under curves, solve differential equations, and analyze physical systems.

Set 1: Basic Integration Formulas

  1. Integral of a constant: ∫1,dx=x+C\int 1 , dx = x + C

  2. Power rule for integration: ∫xn,dx=xn+1n+1+C\int x^{n} , dx = \frac{x^{n+1}}{n+1} + C

  3. Constant factor rule: ∫kf(x),dx=k∫f(x),dx\int k f(x) , dx = k \int f(x) , dx

  4. Sum rule: ∫(f(x)+g(x)),dx=∫f(x),dx+∫g(x),dx\int (f(x) + g(x)) , dx = \int f(x) , dx + \int g(x) , dx

  5. Exponential function: ∫ex,dx=ex+C\int e^{x} , dx = e^{x} + C

  6. Exponential integral: ∫ax,dx=axln⁑a+C\int a^{x} , dx = \frac{a^{x}}{\ln a} + C

  7. Integral of 1x\frac{1}{x}: ∫1x,dx=ln⁑∣x∣+C\int \frac{1}{x} , dx = \ln |x| + C

  8. Integration by substitution: ∫[f(x)]nβ‹…fβ€²(x),dx=[f(x)]n+1n+1+C\int [f(x)]^{n} \cdot f'(x) , dx = \frac{[f(x)]^{n+1}}{n+1} + C

  9. Integral of fβ€²(x)f(x)\frac{f'(x)}{f(x)}: ∫fβ€²(x)f(x),dx=ln⁑∣f(x)∣+C\int \frac{f'(x)}{f(x)} , dx = \ln |f(x)| + C

Set 2: Trigonometric Integration Formulas

  1. Sine function: ∫sin⁑x,dx=βˆ’cos⁑x+C\int \sin x , dx = -\cos x + C

  2. Cosine function: ∫cos⁑x,dx=sin⁑x+C\int \cos x , dx = \sin x + C

  3. Tangent function: ∫tan⁑x,dx=βˆ’ln⁑∣cos⁑x∣+C\int \tan x , dx = -\ln |\cos x| + C

  4. Cotangent function: ∫cot⁑x,dx=ln⁑∣sin⁑x∣+C\int \cot x , dx = \ln |\sin x| + C

  5. Secant function: ∫sec⁑x,dx=ln⁑∣sec⁑x+tan⁑x∣+C\int \sec x , dx = \ln |\sec x + \tan x| + C

  6. Cosecant function: ∫csc⁑x,dx=ln⁑∣csc⁑xβˆ’cot⁑x∣+C\int \csc x , dx = \ln |\csc x - \cot x| + C

  7. Integral of secant squared: ∫sec⁑2x,dx=tan⁑x+C\int \sec^{2} x , dx = \tan x + C

  8. Integral of cosecant squared: ∫csc⁑2x,dx=βˆ’cot⁑x+C\int \csc^{2} x , dx = -\cot x + C

  9. Secant times tangent: ∫sec⁑xtan⁑x,dx=sec⁑x+C\int \sec x \tan x , dx = \sec x + C

  10. Cosecant times cotangent: ∫csc⁑xcot⁑x,dx=βˆ’csc⁑x+C\int \csc x \cot x , dx = -\csc x + C

Set 3: Special Integration Formulas

  1. Inverse sine integral: ∫11βˆ’x2,dx=sinβ‘βˆ’1x+Corβˆ’cosβ‘βˆ’1x+C\int \frac{1}{\sqrt{1-x^{2}}} , dx = \sin^{-1} x + C \quad \text{or} \quad -\cos^{-1} x + C

  2. General form for inverse sine: ∫1a2βˆ’x2,dx=sinβ‘βˆ’1xa+Corβˆ’cosβ‘βˆ’1xa+C\int \frac{1}{\sqrt{a^{2}-x^{2}}} , dx = \sin^{-1} \frac{x}{a} + C \quad \text{or} \quad -\cos^{-1} \frac{x}{a} + C

  3. Inverse tangent integral: ∫11+x2,dx=tanβ‘βˆ’1x+C\int \frac{1}{1+x^{2}} , dx = \tan^{-1} x + C

  4. General form for inverse tangent: ∫1a2+x2,dx=1atanβ‘βˆ’1xa+C\int \frac{1}{a^{2}+x^{2}} , dx = \frac{1}{a} \tan^{-1} \frac{x}{a} + C

  5. Inverse secant integral: ∫1x1βˆ’x2,dx=secβ‘βˆ’1x+Corβˆ’cscβ‘βˆ’1x+C\int \frac{1}{x \sqrt{1-x^{2}}} , dx = \sec^{-1} x + C \quad \text{or} \quad -\csc^{-1} x + C

  6. General form for inverse secant: ∫1xa2βˆ’x2,dx=1asecβ‘βˆ’1xa+Corβˆ’1acscβ‘βˆ’1xa+C\int \frac{1}{x \sqrt{a^{2}-x^{2}}} , dx = \frac{1}{a} \sec^{-1} \frac{x}{a} + C \quad \text{or} \quad -\frac{1}{a} \csc^{-1} \frac{x}{a} + C


Tips and Tricks

  1. Split Complex Expressions: Break down integrals into simpler terms for easier computation.
  2. Use Substitution Wisely: Choose substitutions that simplify both the function and its derivative.
  3. Memorize Key Formulas: Familiarity with standard integration formulas reduces errors.
  4. Factor Constants: Take constants outside the integral for clarity and simplicity.
  5. Verify with Differentiation: Cross-check results by differentiating the antiderivative to ensure correctness.

Summary

This Exercise emphasizes the fundamental principles of integration, including mastering rules, applying formulas, and understanding techniques like substitution and integration by parts. Mastery of these concepts forms the foundation for advanced calculus topics and practical applications in science and engineering.


Reference

By Sir Shahzad Sair:


By Great Science Academy: