Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

1.1 Q-8

Question Statement

Prove the following identities:

i. sinh⁑2x=2sinh⁑xβ‹…cosh⁑x\quad \sinh 2x = 2 \sinh x \cdot \cosh x

ii. sec⁑2x=1βˆ’tanh⁑2x\quad \sec^2 x = 1 - \tanh^2 x

iii. csch⁑2x=coth⁑2xβˆ’1\quad \operatorname{csch}^2 x = \coth^2 x - 1

Background and Explanation

To solve these hyperbolic trigonometric identities, we need a basic understanding of the definitions and relationships of hyperbolic functions. Here are some key definitions:

  • Hyperbolic sine: sinh⁑x=exβˆ’eβˆ’x2\sinh x = \frac{e^x - e^{-x}}{2}

  • Hyperbolic cosine: cosh⁑x=ex+eβˆ’x2\cosh x = \frac{e^x + e^{-x}}{2}

  • Hyperbolic tangent: tanh⁑x=sinh⁑xcosh⁑x\tanh x = \frac{\sinh x}{\cosh x}

  • Hyperbolic secant: sech⁑x=1cosh⁑x\operatorname{sech} x = \frac{1}{\cosh x}

  • Hyperbolic cosecant: csch⁑x=1sinh⁑x\operatorname{csch} x = \frac{1}{\sinh x}

  • Hyperbolic cotangent: coth⁑x=cosh⁑xsinh⁑x\operatorname{coth} x = \frac{\cosh x}{\sinh x}

These formulas will help simplify and prove the identities.


Solution

i. Prove that sinh⁑2x=2sinh⁑xβ‹…cosh⁑x\sinh 2x = 2 \sinh x \cdot \cosh x

Start with the right-hand side (RHS):

R.H.S=2sinh⁑xβ‹…cosh⁑x\text{R.H.S} = 2 \sinh x \cdot \cosh x

Substitute the definitions of sinh⁑x\sinh x and cosh⁑x\cosh x:

=2(exβˆ’eβˆ’x2)(ex+eβˆ’x2)= 2 \left( \frac{e^x - e^{-x}}{2} \right) \left( \frac{e^x + e^{-x}}{2} \right)

Simplify:

=24((exβˆ’eβˆ’x)(ex+eβˆ’x))= \frac{2}{4} \left( (e^x - e^{-x})(e^x + e^{-x}) \right)

Using the difference of squares formula:

=24(e2xβˆ’eβˆ’2x)= \frac{2}{4} \left( e^{2x} - e^{-2x} \right)

This simplifies to:

=sinh⁑2x= \sinh 2x

Thus,

L.H.S=sinh⁑2x=R.H.S\text{L.H.S} = \sinh 2x = \text{R.H.S}

ii. Prove that sec⁑2x=1βˆ’tanh⁑2x\sec^2 x = 1 - \tanh^2 x

Start with the right-hand side (RHS):

R.H.S=1βˆ’tanh⁑2x\text{R.H.S} = 1 - \tanh^2 x

Substitute the definition of tanh⁑x\tanh x:

=1βˆ’(exβˆ’eβˆ’xex+eβˆ’x)2= 1 - \left( \frac{e^x - e^{-x}}{e^x + e^{-x}} \right)^2

Simplify the expression:

=(ex+eβˆ’x)2βˆ’(exβˆ’eβˆ’x)2(ex+eβˆ’x)2= \frac{(e^x + e^{-x})^2 - (e^x - e^{-x})^2}{(e^x + e^{-x})^2}

Now, simplify the numerator using the difference of squares formula:

=e2x+2+eβˆ’2xβˆ’(e2xβˆ’2+eβˆ’2x)(ex+eβˆ’x)2= \frac{e^{2x} + 2 + e^{-2x} - (e^{2x} - 2 + e^{-2x})}{(e^x + e^{-x})^2}

Simplify the terms:

=4(ex+eβˆ’x)2= \frac{4}{(e^x + e^{-x})^2}

Recognize this as the definition of sech⁑2x\operatorname{sech}^2 x:

=sech⁑2x= \operatorname{sech}^2 x

Thus,

L.H.S=sech⁑2x=R.H.S\text{L.H.S} = \operatorname{sech}^2 x = \text{R.H.S}

iii. Prove that csch⁑2x=coth⁑2xβˆ’1\operatorname{csch}^2 x = \coth^2 x - 1

Start with the right-hand side (RHS):

R.H.S=coth⁑2xβˆ’1\text{R.H.S} = \coth^2 x - 1

Substitute the definition of coth⁑x\coth x:

=(cosh⁑xsinh⁑x)2βˆ’1= \left( \frac{\cosh x}{\sinh x} \right)^2 - 1

Simplify:

=cosh⁑2xsinh⁑2xβˆ’1= \frac{\cosh^2 x}{\sinh^2 x} - 1

Now, rewrite 1 as sinh⁑2xsinh⁑2x\frac{\sinh^2 x}{\sinh^2 x}:

=cosh⁑2xβˆ’sinh⁑2xsinh⁑2x= \frac{\cosh^2 x - \sinh^2 x}{\sinh^2 x}

Using the identity cosh⁑2xβˆ’sinh⁑2x=1\cosh^2 x - \sinh^2 x = 1:

=1sinh⁑2x= \frac{1}{\sinh^2 x}

Recognize this as the definition of csch⁑2x\operatorname{csch}^2 x:

=csch⁑2x= \operatorname{csch}^2 x

Thus,

L.H.S=csch⁑2x=R.H.S\text{L.H.S} = \operatorname{csch}^2 x = \text{R.H.S}

Key Formulas or Methods Used

  • Hyperbolic functions: sinh⁑x=exβˆ’eβˆ’x2,cosh⁑x=ex+eβˆ’x2,tanh⁑x=sinh⁑xcosh⁑x\sinh x = \frac{e^x - e^{-x}}{2}, \quad \cosh x = \frac{e^x + e^{-x}}{2}, \quad \tanh x = \frac{\sinh x}{\cosh x}

  • Difference of squares formula: (aβˆ’b)(a+b)=a2βˆ’b2(a - b)(a + b) = a^2 - b^2

  • Hyperbolic secant and cosecant: sech⁑x=1cosh⁑x,csch⁑x=1sinh⁑x\operatorname{sech} x = \frac{1}{\cosh x}, \quad \operatorname{csch} x = \frac{1}{\sinh x}

  • Identity: cosh⁑2xβˆ’sinh⁑2x=1\cosh^2 x - \sinh^2 x = 1


Summary of Steps

  1. For i: Expand and simplify the expression for 2sinh⁑xβ‹…cosh⁑x2 \sinh x \cdot \cosh x to get sinh⁑2x\sinh 2x.
  2. For ii: Expand 1βˆ’tanh⁑2x1 - \tanh^2 x and simplify to get sech⁑2x\operatorname{sech}^2 x.
  3. For iii: Simplify the expression for coth⁑2xβˆ’1\coth^2 x - 1 to get csch⁑2x\operatorname{csch}^2 x.