Question Statement
Given the following real-valued functions f(x) and g(x), find:
- (a) fβg(x)
- (b) gβf(x)
- (c) fβf(x)
Functions:
- f(x)=2x+1,g(x)=xβ13β,xξ =1
- f(x)=x+1β,g(x)=x21β,xξ =0
- f(x)=xβ1β1β,g(x)=(x2+1)2,xξ =1
- f(x)=3x4β2x2,g(x)=xβ2β,xξ =0
Background and Explanation
To solve these, we need to understand function composition, which means evaluating one function inside another. For example:
- fβg(x) means we first apply g(x), and then apply f to the result.
- Similarly, gβf(x) means we apply f(x) first and then g to the result.
We will apply this concept to each of the given pairs of functions.
Solution
(a) Find fβg(x)
1. For f(x)=2x+1 and g(x)=xβ13β:
We need to compute fβg(x)=f(g(x)):
fβg(x)=f(xβ13β)=2(xβ13β)+1=xβ16β+1=xβ1x+5β
2. For f(x)=x+1β and g(x)=x21β:
We need to compute fβg(x)=f(g(x)):
fβg(x)=f(x21β)=x21β+1β=x2x2+1ββ=xx2+1ββ
3. For f(x)=xβ1β1β and g(x)=(x2+1)2:
We need to compute fβg(x)=f(g(x)):
fβg(x)=f((x2+1)2)=(x2+1)2β1β1β=x4+2x2β1β=xx2+2β1β
4. For f(x)=3x4β2x2 and g(x)=xβ2β:
We need to compute fβg(x)=f(g(x)):
fβg(x)=f(xβ2β)=3(xβ2β)4β2(xβ2β)2=x248ββx8β=x28(6βx)β
(b) Find gβf(x)
1. For f(x)=2x+1 and g(x)=xβ13β:
We need to compute gβf(x)=g(f(x)):
gβf(x)=g(2x+1)=(2x+1)β13β=2x3β
2. For f(x)=x+1β and g(x)=x21β:
We need to compute gβf(x)=g(f(x)):
gβf(x)=g(x+1β)=(x+1β)21β=x+11β
3. For f(x)=xβ1β1β and g(x)=(x2+1)2:
We need to compute gβf(x)=g(f(x)):
gβf(x)=g(xβ1β1β)=((xβ1β1β)2+1)2=(xβ1xβ)2
4. For f(x)=3x4β2x2 and g(x)=xβ2β:
We need to compute gβf(x)=g(f(x)):
gβf(x)=g(3x4β2x2)=3x4β2x2β2β=xβ
3x2β2β2β
(c) Find fβf(x)
1. For f(x)=2x+1:
We need to compute fβf(x)=f(f(x)):
fβf(x)=f(2x+1)=2(2x+1)+1=4x+3
2. For f(x)=x+1β:
We need to compute fβf(x)=f(f(x)):
fβf(x)=f(x+1β)=x+1β+1β
3. For f(x)=xβ1β1β:
We need to compute fβf(x)=f(f(x)):
fβf(x)=f(xβ1β1β)=xβ1β1ββ1β
4. For f(x)=3x4β2x2:
We need to compute fβf(x)=f(f(x)):
fβf(x)=f(3x4β2x2)=3(3x4β2x2)4β2(3x4β2x2)2
- Function Composition: If f(x) and g(x) are two functions, then:
- fβg(x)=f(g(x))
- gβf(x)=g(f(x))
- Simplification: When simplifying, always apply operations inside the functions first, and then simplify the outer operations.
Summary of Steps
-
For fβg(x):
- Plug g(x) into f(x).
-
For gβf(x):
- Plug f(x) into g(x).
-
For fβf(x) and gβg(x):
- Apply the function to itself as if itβs another function.