Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

1.2 Q-1

Question Statement

Given the following real-valued functions f(x)f(x) and g(x)g(x), find:

  • (a) f∘g(x)f \circ g(x)
  • (b) g∘f(x)g \circ f(x)
  • (c) f∘f(x)f \circ f(x)

Functions:

  1. f(x)=2x+1,g(x)=3xβˆ’1,xβ‰ 1f(x) = 2x + 1, g(x) = \frac{3}{x - 1}, x \neq 1
  2. f(x)=x+1,g(x)=1x2,x≠0f(x) = \sqrt{x + 1}, g(x) = \frac{1}{x^2}, x \neq 0
  3. f(x)=1xβˆ’1,g(x)=(x2+1)2,xβ‰ 1f(x) = \frac{1}{\sqrt{x - 1}}, g(x) = (x^2 + 1)^2, x \neq 1
  4. f(x)=3x4βˆ’2x2,g(x)=2x,xβ‰ 0f(x) = 3x^4 - 2x^2, g(x) = \frac{2}{\sqrt{x}}, x \neq 0

Background and Explanation

To solve these, we need to understand function composition, which means evaluating one function inside another. For example:

  • f∘g(x)f \circ g(x) means we first apply g(x)g(x), and then apply ff to the result.
  • Similarly, g∘f(x)g \circ f(x) means we apply f(x)f(x) first and then gg to the result.

We will apply this concept to each of the given pairs of functions.


Solution

(a) Find f∘g(x)f \circ g(x)

1. For f(x)=2x+1f(x) = 2x + 1 and g(x)=3xβˆ’1g(x) = \frac{3}{x - 1}:

We need to compute f∘g(x)=f(g(x))f \circ g(x) = f(g(x)):

f∘g(x)=f(3xβˆ’1)=2(3xβˆ’1)+1=6xβˆ’1+1=x+5xβˆ’1f \circ g(x) = f\left(\frac{3}{x-1}\right) = 2\left(\frac{3}{x-1}\right) + 1 = \frac{6}{x-1} + 1 = \frac{x + 5}{x - 1}

2. For f(x)=x+1f(x) = \sqrt{x + 1} and g(x)=1x2g(x) = \frac{1}{x^2}:

We need to compute f∘g(x)=f(g(x))f \circ g(x) = f(g(x)):

f∘g(x)=f(1x2)=1x2+1=x2+1x2=x2+1xf \circ g(x) = f\left(\frac{1}{x^2}\right) = \sqrt{\frac{1}{x^2} + 1} = \sqrt{\frac{x^2 + 1}{x^2}} = \frac{\sqrt{x^2 + 1}}{x}

3. For f(x)=1xβˆ’1f(x) = \frac{1}{\sqrt{x - 1}} and g(x)=(x2+1)2g(x) = (x^2 + 1)^2:

We need to compute f∘g(x)=f(g(x))f \circ g(x) = f(g(x)):

f∘g(x)=f((x2+1)2)=1(x2+1)2βˆ’1=1x4+2x2=1xx2+2f \circ g(x) = f\left((x^2 + 1)^2\right) = \frac{1}{\sqrt{(x^2 + 1)^2 - 1}} = \frac{1}{\sqrt{x^4 + 2x^2}} = \frac{1}{x\sqrt{x^2 + 2}}

4. For f(x)=3x4βˆ’2x2f(x) = 3x^4 - 2x^2 and g(x)=2xg(x) = \frac{2}{\sqrt{x}}:

We need to compute f∘g(x)=f(g(x))f \circ g(x) = f(g(x)):

f∘g(x)=f(2x)=3(2x)4βˆ’2(2x)2=48x2βˆ’8x=8(6βˆ’x)x2f \circ g(x) = f\left(\frac{2}{\sqrt{x}}\right) = 3\left(\frac{2}{\sqrt{x}}\right)^4 - 2\left(\frac{2}{\sqrt{x}}\right)^2 = \frac{48}{x^2} - \frac{8}{x} = \frac{8(6 - x)}{x^2}

(b) Find g∘f(x)g \circ f(x)

1. For f(x)=2x+1f(x) = 2x + 1 and g(x)=3xβˆ’1g(x) = \frac{3}{x - 1}:

We need to compute g∘f(x)=g(f(x))g \circ f(x) = g(f(x)):

g∘f(x)=g(2x+1)=3(2x+1)βˆ’1=32xg \circ f(x) = g(2x + 1) = \frac{3}{(2x + 1) - 1} = \frac{3}{2x}

2. For f(x)=x+1f(x) = \sqrt{x + 1} and g(x)=1x2g(x) = \frac{1}{x^2}:

We need to compute g∘f(x)=g(f(x))g \circ f(x) = g(f(x)):

g∘f(x)=g(x+1)=1(x+1)2=1x+1g \circ f(x) = g\left(\sqrt{x + 1}\right) = \frac{1}{(\sqrt{x + 1})^2} = \frac{1}{x + 1}

3. For f(x)=1xβˆ’1f(x) = \frac{1}{\sqrt{x - 1}} and g(x)=(x2+1)2g(x) = (x^2 + 1)^2:

We need to compute g∘f(x)=g(f(x))g \circ f(x) = g(f(x)):

g∘f(x)=g(1xβˆ’1)=((1xβˆ’1)2+1)2=(xxβˆ’1)2g \circ f(x) = g\left(\frac{1}{\sqrt{x - 1}}\right) = \left(\left(\frac{1}{\sqrt{x - 1}}\right)^2 + 1\right)^2 = \left(\frac{x}{x - 1}\right)^2

4. For f(x)=3x4βˆ’2x2f(x) = 3x^4 - 2x^2 and g(x)=2xg(x) = \frac{2}{\sqrt{x}}:

We need to compute g∘f(x)=g(f(x))g \circ f(x) = g(f(x)):

g∘f(x)=g(3x4βˆ’2x2)=23x4βˆ’2x2=xβ‹…23x2βˆ’2g \circ f(x) = g\left(3x^4 - 2x^2\right) = \frac{2}{\sqrt{3x^4 - 2x^2}} = x \cdot \frac{2}{\sqrt{3x^2 - 2}}

(c) Find f∘f(x)f \circ f(x)

1. For f(x)=2x+1f(x) = 2x + 1:

We need to compute f∘f(x)=f(f(x))f \circ f(x) = f(f(x)):

f∘f(x)=f(2x+1)=2(2x+1)+1=4x+3f \circ f(x) = f(2x + 1) = 2(2x + 1) + 1 = 4x + 3

2. For f(x)=x+1f(x) = \sqrt{x + 1}:

We need to compute f∘f(x)=f(f(x))f \circ f(x) = f(f(x)):

f∘f(x)=f(x+1)=x+1+1f \circ f(x) = f(\sqrt{x + 1}) = \sqrt{\sqrt{x + 1} + 1}

3. For f(x)=1xβˆ’1f(x) = \frac{1}{\sqrt{x - 1}}:

We need to compute f∘f(x)=f(f(x))f \circ f(x) = f(f(x)):

f∘f(x)=f(1xβˆ’1)=11xβˆ’1f \circ f(x) = f\left(\frac{1}{\sqrt{x - 1}}\right) = \frac{1}{\sqrt{\frac{1}{\sqrt{x - 1}}}}

4. For f(x)=3x4βˆ’2x2f(x) = 3x^4 - 2x^2:

We need to compute f∘f(x)=f(f(x))f \circ f(x) = f(f(x)):

f∘f(x)=f(3x4βˆ’2x2)=3(3x4βˆ’2x2)4βˆ’2(3x4βˆ’2x2)2f \circ f(x) = f\left(3x^4 - 2x^2\right) = 3\left(3x^4 - 2x^2\right)^4 - 2\left(3x^4 - 2x^2\right)^2

Key Formulas or Methods Used

  • Function Composition: If f(x)f(x) and g(x)g(x) are two functions, then:
    • f∘g(x)=f(g(x))f \circ g(x) = f(g(x))
    • g∘f(x)=g(f(x))g \circ f(x) = g(f(x))
  • Simplification: When simplifying, always apply operations inside the functions first, and then simplify the outer operations.

Summary of Steps

  1. For f∘g(x)f \circ g(x):

    • Plug g(x)g(x) into f(x)f(x).
  2. For g∘f(x)g \circ f(x):

    • Plug f(x)f(x) into g(x)g(x).
  3. For f∘f(x)f \circ f(x) and g∘g(x)g \circ g(x):

    • Apply the function to itself as if it’s another function.