Question Statement
For the real-valued function f defined below, find:
- (a) fβ1(x),
- (b) fβ1(β1),
- (c) Verify the identities:
f(fβ1(x))=xandfβ1(f(x))=x
The functions given are:
- f(x)=β2x+8
- f(x)=3x3+7
- f(x)=(βx+9)3
- f(x)=xβ12x+1β, where x>1
Background and Explanation
To solve these problems, we need to recall the concept of an inverse function. The inverse of a function f, denoted fβ1, is defined such that:
f(fβ1(x))=xandfβ1(f(x))=x
This means that applying the function f to its inverse will give back the input, and similarly, applying the inverse function to f(x) will return the input. In part (a), we will find the inverse functions of the given functions. In part (b), we will substitute x=β1 into the inverse function. Part (c) will involve verifying the identities for each function.
Solution
(i) f(x)=β2x+8
Finding the inverse:
Given f(x)=β2x+8, set y=f(x):
y=β2x+8
Solve for x:
yβ8=β2xβx=28βyβ
Thus, the inverse function is:
fβ1(x)=28βxβ
Finding fβ1(β1):
Substitute x=β1 into fβ1(x):
fβ1(β1)=28β(β1)β=29β
Verifying f(fβ1(x))=x:
Substitute fβ1(x)=28βxβ into f(x):
f(fβ1(x))=f(28βxβ)=β2(28βxβ)+8=x
Thus, f(fβ1(x))=x holds true.
(ii) f(x)=3x3+7
Finding the inverse:
Given f(x)=3x3+7, set y=f(x):
y=3x3+7
Solve for x:
3yβ7β=x3βx=(3yβ7β)1/3
Thus, the inverse function is:
fβ1(x)=(3xβ7β)1/3
Finding fβ1(β1):
Substitute x=β1 into fβ1(x):
fβ1(β1)=(3β1β7β)1/3=(3β8β)1/3
Verifying f(fβ1(x))=x:
Substitute fβ1(x)=(3xβ7β)1/3 into f(x):
f(fβ1(x))=f((3xβ7β)1/3)=3((3xβ7β)1/3)3+7=x
Thus, f(fβ1(x))=x holds true.
(iii) f(x)=(βx+9)3
Finding the inverse:
Given f(x)=(βx+9)3, set y=f(x):
y=(βx+9)3
Take the cube root of both sides:
y1/3=βx+9βx=9βy1/3
Thus, the inverse function is:
fβ1(x)=9βx1/3
Finding fβ1(β1):
Substitute x=β1 into fβ1(x):
fβ1(β1)=9β(β1)1/3=9+1=10
Verifying f(fβ1(x))=x:
Substitute fβ1(x)=9βx1/3 into f(x):
f(fβ1(x))=f(9βx1/3)=(β[9βx1/3]+9)3=x
Thus, f(fβ1(x))=x holds true.
(iv) f(x)=xβ12x+1β, where x>1
Finding the inverse:
Given f(x)=xβ12x+1β, set y=f(x):
y=xβ12x+1β
Multiply both sides by (xβ1):
y(xβ1)=2x+1
Expand and solve for x:
yxβy=2x+1β(yβ2)x=y+1βx=yβ2y+1β
Thus, the inverse function is:
fβ1(x)=xβ2x+1β
Finding fβ1(β1):
Substitute x=β1 into fβ1(x):
fβ1(β1)=β1β2β1+1β=β30β=0
Verifying f(fβ1(x))=x:
Substitute fβ1(x)=xβ2x+1β into f(x):
f(fβ1(x))=f(xβ2x+1β)=(xβ2x+1β)β12(xβ2x+1β)+1β=x
Thus, f(fβ1(x))=x holds true.
-
Inverse Function Formula:
For a function f(x), the inverse fβ1(x) satisfies the property:
f(fβ1(x))=xandfβ1(f(x))=x
-
Solving for Inverse:
To find fβ1(x), solve the equation y=f(x) for x in terms of y.
Summary of Steps
- Find the inverse of the function by solving y=f(x) for x.
- Substitute x=β1 into the inverse function to find fβ1(β1).
- Verify the identity f(fβ1(x))=x by substituting fβ1(x) into f(x).
- Verify the identity fβ1(f(x))=x by substituting f(x) into fβ1(x).