Question Statement
Evaluate the following limits:
i. limh→0xsin7x
ii. limx→0xsinx0
iii. limx→0sinθ1−cosθ
iv. limx→ππ−xsinθ
v. limx→0sinbxsinax
vi. limx→0tanxx
vii. limx→0x21−cos2x
viii. limx→0sin2x1−cosx
ix. limθ→0θsin2θ
x. limx→0xsecx−cosx
xi. limθ→01−cosqθ1−cospθ
xii. limθ→0sin3θtanθ−sinθ
Background and Explanation
The problem involves evaluating several limits, primarily related to trigonometric functions. Some key concepts include:
- Trigonometric Limits: Basic limits of sine and cosine functions as x→0.
- Limit Laws: Using properties such as the limit of sine and cosine functions and using substitution methods to simplify the expressions.
- Algebraic Manipulations: Simplifying expressions through common techniques like factoring, multiplying by conjugates, or using standard limit properties.
Solution
i. limh→0xsin7x
We can rewrite this as:
h→0lim77xsin7x=7h→0lim7xsin7x=7(1)=7
ii. limx→0xsinx0
Since x0=1 for any x:
=x→0limxsin180xπ⋅180π180π=x→0lim180xπsin180xπ⋅180π=1⋅180π=180π
iii. limx→0sinθ1−cosθ
We multiply by the conjugate:
x→0limsinθ1−cosθ⋅1+cosθ1+cosθ=x→0limsinθ(1+cosθ)sin2θ=x→0lim1+cosθsinθ=20=0
iv. limx→ππ−xsinθ
Let x=π−θ so that as x→π, θ→0:
=θ→0limπ−(π−θ)sin(π−θ)=θ→0limθsinθ=1
v. limx→0sinbxsinax
This is simplified as:
=x→0lim(ba)=ba
vi. limx→0tanxx
Using the fact that limx→0xsinx=1:
=x→0limxsinxcosx=1
vii. limx→0x21−cos2x
Using the identity cos2x=2cos2x−1:
=x→0limx22sin2x=2⋅x→0limxsinx=2(1)=2
viii. limx→0sin2x1−cosx
We multiply by the conjugate:
=x→0limsin2x(1+cosx)sin2x=21
ix. limθ→0θsin2θ
Simplifying:
=θ→0limθsin2θ⋅θ=0
x. limx→0xsecx−cosx
Simplifying the expression:
=x→0limxcosx1−cos2x=0
xi. limθ→01−cosqθ1−cospθ
Using the small angle approximations:
=q2p2
xii. limθ→0sin3θtanθ−sinθ
Simplifying:
=21
- Limit of Sine and Cosine: limx→0xsinx=1
- Conjugate Multiplication: Used to simplify trigonometric expressions.
- Small Angle Approximation: Simplifications for sinx≈x and cosx≈1 as x→0.
Summary of Steps
- For each limit, identify trigonometric identities or simplifications (like sinx≈x as x→0).
- Simplify the expression using known limits or algebraic manipulation (e.g., conjugate multiplication, factoring).
- Apply the standard limits of trigonometric functions to solve for the final result.
- Ensure all intermediate steps are logically connected to avoid skipping key steps.
For better understanding refer to video provided on 03_Ex 1.3