Question Statement
Determine the left-hand limit (LHL), right-hand limit (RHL), and overall limit for the following functions as xβc:
- f(x)=2x2+xβ5,,c=1
- f(x)=xβ3x2β9β,,c=β3
- f(x)=β£xβ5β£,,c=5
Background and Explanation
To find limits, you need to evaluate how a function behaves as x approaches a specific value (c) from the left (xβcβ) and the right (xβc+). If both LHL and RHL are equal, the limit exists and equals their value. For functions involving polynomials, rational expressions, or absolute values, factorization, simplification, and substitution are commonly used to evaluate limits.
Solution
1. f(x)=2x2+xβ5,,c=1
Left-Hand Limit (LHL)
LHL=xβ1βlimβf(x)=xβ1βlimβ(2x2+xβ5)
Substitute x=1:
LHL=2(1)2+1β5=2+1β5=β2
Right-Hand Limit (RHL)
RHL=xβ1+limβf(x)=xβ1+limβ(2x2+xβ5)
Substitute x=1:
RHL=2(1)2+1β5=2+1β5=β2
Overall Limit
Since LHL=RHL=β2, the overall limit is:
xβ1limβf(x)=β2
2. f(x)=xβ3x2β9β,,c=β3
Left-Hand Limit (LHL)
LHL=xββ3βlimβf(x)=xββ3βlimβxβ3x2β9β
Factorize x2β9=(xβ3)(x+3):
LHL=xββ3βlimβxβ3(xβ3)(x+3)β
Cancel xβ3 (valid as xξ =3):
LHL=xββ3βlimβ(x+3)
Substitute x=β3:
LHL=β3+3=0
Right-Hand Limit (RHL)
RHL=xββ3+limβf(x)=xββ3+limβxβ3x2β9β
Repeat the same steps:
RHL=xββ3+limβ(x+3)=β3+3=0
Overall Limit
Since LHL=RHL=0, the overall limit is:
xββ3limβf(x)=0
3. f(x)=β£xβ5β£,,c=5
Left-Hand Limit (LHL)
LHL=xβ5βlimβf(x)=xβ5βlimββ£xβ5β£
As xβ5β, β£xβ5β£=β(xβ5) because xβ5<0:
LHL=xβ5βlimββ(xβ5)=β(5β5)=0
Right-Hand Limit (RHL)
RHL=xβ5+limβf(x)=xβ5+limββ£xβ5β£
As xβ5+, β£xβ5β£=xβ5 because xβ5β₯0:
RHL=xβ5+limβ(xβ5)=5β5=0
Overall Limit
Since LHL=RHL=0, the overall limit is:
xβ5limβf(x)=0
- Polynomial substitution: Direct evaluation of limits by substituting xβc.
- Factorization: Simplifying rational functions by canceling common terms.
- Absolute value definition: Splitting the function into cases based on the sign of the expression inside β£xβaβ£.
Summary of Steps
- For f(x)=2x2+xβ5,,c=1:
- Substitute x=1 to find LHL, RHL, and the overall limit (β2).
- For f(x)=xβ3x2β9β,,c=β3:
- Factorize numerator, cancel common terms, and substitute x=β3 (0).
- For f(x)=β£xβ5β£,,c=5:
- Use the definition of absolute value for LHL and RHL (0).