Question Statement
Discuss the continuity of the function
f(x)={3xβifΒ xβ€β2,x2β1βifΒ β2<x<2,3βifΒ xβ₯2β
at x=2 and x=β2.
Background and Explanation
To determine the continuity of a piecewise function at a specific point x=c, we must verify three conditions:
- f(c) is defined.
- The left-hand limit (limxβcββf(x)) and the right-hand limit (limxβc+βf(x)) exist.
- f(c), L.H.L, and R.H.L are equal.
If any condition is not satisfied, the function is discontinuous at x=c.
Solution
Continuity at x=2
Step 1: Evaluate f(2)
From the definition of the function for xβ₯2:
f(2)=3
Step 2: Compute Left-Hand Limit (L.H.L)
For x<2, f(x)=x2β1. Substituting xβ2β:
xβ2βlimβf(x)=xβ2βlimβ(x2β1)=22β1=4β1=3
Step 3: Compute Right-Hand Limit (R.H.L)
For xβ₯2, f(x)=3. Substituting xβ2+:
xβ2+limβf(x)=xβ2+limβ3=3
Step 4: Verify Continuity
Since f(2)=3, L.H.L=3, and R.H.L=3, the function is continuous at x=2.
Continuity at x=β2
Step 1: Evaluate f(β2)
From the definition of the function for xβ€β2:
f(β2)=3(β2)=β6
Step 2: Compute Left-Hand Limit (L.H.L)
For x<β2, f(x)=3x. Substituting xββ2β:
xββ2βlimβf(x)=xββ2βlimβ3x=3(β2)=β6
Step 3: Compute Right-Hand Limit (R.H.L)
For β2<x<2, f(x)=x2β1. Substituting xββ2+:
xββ2+limβf(x)=xββ2+limβ(x2β1)=(β2)2β1=4β1=3
Step 4: Verify Continuity
Here:
- f(β2)=β6,
- L.H.L=β6,
- R.H.L=3.
Since L.H.Lξ =R.H.L and f(β2)ξ =L.H.L, the function is discontinuous at x=β2.
- Definition of Continuity:
A function f(x) is continuous at x=c if:
xβcβlimβf(x)=xβc+limβf(x)=f(c)
- Limit Calculation for Piecewise Functions:
- For each piece, identify the function applicable for the specific range.
- Substitute the value of x into the corresponding limit expression.
Summary of Steps
-
Continuity at x=2:
- f(2)=3, L.H.L=3, R.H.L=3.
- Conclusion: Continuous at x=2.
-
Continuity at x=β2:
- f(β2)=β6, L.H.L=β6, R.H.L=3.
- Conclusion: Discontinuous at x=β2.