Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

1.4 Q-3

Question Statement

Discuss the continuity of the function

f(x)={3xifΒ xβ‰€βˆ’2,x2βˆ’1ifΒ βˆ’2<x<2,3ifΒ xβ‰₯2f(x) = \begin{cases} 3x & \text{if } x \leq -2, x^2 - 1 & \text{if } -2 < x < 2, 3 & \text{if } x \geq 2 \end{cases}

at x=2x = 2 and x=βˆ’2x = -2.

Background and Explanation

To determine the continuity of a piecewise function at a specific point x=cx = c, we must verify three conditions:

  1. f(c)f(c) is defined.
  2. The left-hand limit (lim⁑xβ†’cβˆ’f(x)\lim_{x \to c^-} f(x)) and the right-hand limit (lim⁑xβ†’c+f(x)\lim_{x \to c^+} f(x)) exist.
  3. f(c)f(c), L.H.L\text{L.H.L}, and R.H.L\text{R.H.L} are equal.

If any condition is not satisfied, the function is discontinuous at x=cx = c.

Solution

Continuity at x=2x = 2

Step 1: Evaluate f(2)f(2)

From the definition of the function for xβ‰₯2x \geq 2:

f(2)=3f(2) = 3

Step 2: Compute Left-Hand Limit (L.H.L)

For x<2x < 2, f(x)=x2βˆ’1f(x) = x^2 - 1. Substituting xβ†’2βˆ’x \to 2^-:

lim⁑xβ†’2βˆ’f(x)=lim⁑xβ†’2βˆ’(x2βˆ’1)=22βˆ’1=4βˆ’1=3\lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} (x^2 - 1) = 2^2 - 1 = 4 - 1 = 3

Step 3: Compute Right-Hand Limit (R.H.L)

For xβ‰₯2x \geq 2, f(x)=3f(x) = 3. Substituting xβ†’2+x \to 2^+:

lim⁑xβ†’2+f(x)=lim⁑xβ†’2+3=3\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} 3 = 3

Step 4: Verify Continuity

Since f(2)=3f(2) = 3, L.H.L=3\text{L.H.L} = 3, and R.H.L=3\text{R.H.L} = 3, the function is continuous at x=2x = 2.


Continuity at x=βˆ’2x = -2

Step 1: Evaluate f(βˆ’2)f(-2)

From the definition of the function for xβ‰€βˆ’2x \leq -2:

f(βˆ’2)=3(βˆ’2)=βˆ’6f(-2) = 3(-2) = -6

Step 2: Compute Left-Hand Limit (L.H.L)

For x<βˆ’2x < -2, f(x)=3xf(x) = 3x. Substituting xβ†’βˆ’2βˆ’x \to -2^-:

lim⁑xβ†’βˆ’2βˆ’f(x)=lim⁑xβ†’βˆ’2βˆ’3x=3(βˆ’2)=βˆ’6\lim_{x \to -2^-} f(x) = \lim_{x \to -2^-} 3x = 3(-2) = -6

Step 3: Compute Right-Hand Limit (R.H.L)

For βˆ’2<x<2-2 < x < 2, f(x)=x2βˆ’1f(x) = x^2 - 1. Substituting xβ†’βˆ’2+x \to -2^+:

lim⁑xβ†’βˆ’2+f(x)=lim⁑xβ†’βˆ’2+(x2βˆ’1)=(βˆ’2)2βˆ’1=4βˆ’1=3\lim_{x \to -2^+} f(x) = \lim_{x \to -2^+} (x^2 - 1) = (-2)^2 - 1 = 4 - 1 = 3

Step 4: Verify Continuity

Here:

  • f(βˆ’2)=βˆ’6f(-2) = -6,
  • L.H.L=βˆ’6\text{L.H.L} = -6,
  • R.H.L=3\text{R.H.L} = 3.

Since L.H.Lβ‰ R.H.L\text{L.H.L} \neq \text{R.H.L} and f(βˆ’2)β‰ L.H.Lf(-2) \neq \text{L.H.L}, the function is discontinuous at x=βˆ’2x = -2.


Key Formulas or Methods Used

  1. Definition of Continuity:
    A function f(x)f(x) is continuous at x=cx = c if:
lim⁑xβ†’cβˆ’f(x)=lim⁑xβ†’c+f(x)=f(c) \lim_{x \to c^-} f(x) = \lim_{x \to c^+} f(x) = f(c)
  1. Limit Calculation for Piecewise Functions:
    • For each piece, identify the function applicable for the specific range.
    • Substitute the value of xx into the corresponding limit expression.

Summary of Steps

  1. Continuity at x=2x = 2:

    • f(2)=3f(2) = 3, L.H.L=3\text{L.H.L} = 3, R.H.L=3\text{R.H.L} = 3.
    • Conclusion: Continuous at x=2x = 2.
  2. Continuity at x=βˆ’2x = -2:

    • f(βˆ’2)=βˆ’6f(-2) = -6, L.H.L=βˆ’6\text{L.H.L} = -6, R.H.L=3\text{R.H.L} = 3.
    • Conclusion: Discontinuous at x=βˆ’2x = -2.