Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

1.4 Q-4

Question Statement

Find the value of cc such that the following piecewise function has a limit at x=βˆ’1x = -1:

f(x)={x+2,xβ‰€βˆ’1c+2,x>βˆ’1f(x) = \begin{cases} x + 2, & x \leq -1 c + 2, & x > -1 \end{cases}

Background and Explanation

For the limit of f(x)f(x) to exist at x=βˆ’1x = -1, the left-hand limit (L.H.L) and right-hand limit (R.H.L) must both exist and be equal:

lim⁑xβ†’βˆ’1βˆ’f(x)=lim⁑xβ†’βˆ’1+f(x)\lim_{x \to -1^-} f(x) = \lim_{x \to -1^+} f(x)

Additionally, the limit value must match the function’s value if continuity is required, but in this case, the focus is only on the existence of the limit.

Solution

Step 1: Evaluate the Left-Hand Limit (L.H.L)

For xβ‰€βˆ’1x \leq -1, the function is defined as f(x)=x+2f(x) = x + 2. Substituting xβ†’βˆ’1βˆ’x \to -1^-:

lim⁑xβ†’βˆ’1βˆ’f(x)=(βˆ’1)+2=1\lim_{x \to -1^-} f(x) = (-1) + 2 = 1

Step 2: Evaluate the Right-Hand Limit (R.H.L)

For x>βˆ’1x > -1, the function is defined as f(x)=c+2f(x) = c + 2. Substituting xβ†’βˆ’1+x \to -1^+:

lim⁑xβ†’βˆ’1+f(x)=c+2\lim_{x \to -1^+} f(x) = c + 2

Step 3: Set L.H.L Equal to R.H.L

For the limit at x=βˆ’1x = -1 to exist:

lim⁑xβ†’βˆ’1βˆ’f(x)=lim⁑xβ†’βˆ’1+f(x)\lim_{x \to -1^-} f(x) = \lim_{x \to -1^+} f(x)

Substituting the results:

1=c+21 = c + 2

Step 4: Solve for cc

Rearranging:

c=1βˆ’2=βˆ’1c = 1 - 2 = -1

Final Answer

The value of cc must be βˆ’1-1 for the limit of f(x)f(x) to exist at x=βˆ’1x = -1.

Key Formulas or Methods Used

  1. Definition of Limit Existence:
    A limit at x=ax = a exists if lim⁑xβ†’aβˆ’f(x)=lim⁑xβ†’a+f(x)\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x).

  2. Piecewise Function Analysis:
    Evaluate the function separately for x<ax < a and x>ax > a, then equate the results.

Summary of Steps

  1. Identify the function for xβ‰€βˆ’1x \leq -1 (f(x)=x+2f(x) = x + 2) and compute lim⁑xβ†’βˆ’1βˆ’f(x)=1\lim_{x \to -1^-} f(x) = 1.
  2. Identify the function for x>βˆ’1x > -1 (f(x)=c+2f(x) = c + 2) and compute lim⁑xβ†’βˆ’1+f(x)=c+2\lim_{x \to -1^+} f(x) = c + 2.
  3. Set lim⁑xβ†’βˆ’1βˆ’f(x)=lim⁑xβ†’βˆ’1+f(x)\lim_{x \to -1^-} f(x) = \lim_{x \to -1^+} f(x), yielding 1=c+21 = c + 2.
  4. Solve for cc, obtaining c=βˆ’1c = -1.