Question Statement
Find the value of c such that the following piecewise function has a limit at x=β1:
f(x)={x+2,βxβ€β1c+2,βx>β1β
Background and Explanation
For the limit of f(x) to exist at x=β1, the left-hand limit (L.H.L) and right-hand limit (R.H.L) must both exist and be equal:
xββ1βlimβf(x)=xββ1+limβf(x)
Additionally, the limit value must match the functionβs value if continuity is required, but in this case, the focus is only on the existence of the limit.
Solution
Step 1: Evaluate the Left-Hand Limit (L.H.L)
For xβ€β1, the function is defined as f(x)=x+2. Substituting xββ1β:
xββ1βlimβf(x)=(β1)+2=1
Step 2: Evaluate the Right-Hand Limit (R.H.L)
For x>β1, the function is defined as f(x)=c+2. Substituting xββ1+:
xββ1+limβf(x)=c+2
Step 3: Set L.H.L Equal to R.H.L
For the limit at x=β1 to exist:
xββ1βlimβf(x)=xββ1+limβf(x)
Substituting the results:
1=c+2
Step 4: Solve for c
Rearranging:
c=1β2=β1
Final Answer
The value of c must be β1 for the limit of f(x) to exist at x=β1.
-
Definition of Limit Existence:
A limit at x=a exists if limxβaββf(x)=limxβa+βf(x).
-
Piecewise Function Analysis:
Evaluate the function separately for x<a and x>a, then equate the results.
Summary of Steps
- Identify the function for xβ€β1 (f(x)=x+2) and compute limxββ1ββf(x)=1.
- Identify the function for x>β1 (f(x)=c+2) and compute limxββ1+βf(x)=c+2.
- Set limxββ1ββf(x)=limxββ1+βf(x), yielding 1=c+2.
- Solve for c, obtaining c=β1.