Question Statement
Find the values of m and n such that the following functions are continuous at the specified points:
-
mx & \text{if } x < 3
n & \text{if } x = 3
-2x + 9 & \text{if } x > 3
\end{cases}$$
-
mx & \text{if } x < 4
x^2 & \text{if } x \geq 4
\end{cases}$$
Background and Explanation
For a function f(x) to be continuous at a point x=a, it must satisfy:
- f(a) exists.
- limxβaββf(x)=limxβa+βf(x).
- The value of f(a) equals the common limit.
The above properties imply that the left-hand limit (L.H.L) and right-hand limit (R.H.L) must be equal and match the functionβs value at x=a.
Solution
Part 1: Continuity at x=3
Step 1: Function Value at x=3
The value of f(3) is given as n.
f(3)=n(1)
Step 2: Evaluate Right-Hand Limit (R.H.L)
For x>3, f(x)=β2x+9.
xβ3+limβf(x)=β2(3)+9=β6+9=3(2)
Step 3: Evaluate Left-Hand Limit (L.H.L)
For x<3, f(x)=mx.
xβ3βlimβf(x)=m(3)=3m(3)
Step 4: Apply Continuity Condition
Since f(x) is continuous at x=3:
xβ3βlimβf(x)=xβ3+limβf(x)=f(3)
Substitute the results:
3m=3andn=3
Solving for m:
m=1
Final Answer (Part 1)
m=1,n=3
Part 2: Continuity at x=4
Step 1: Function Value at x=4
For xβ₯4, f(x)=x2.
f(4)=42=16(4)
Step 2: Evaluate Left-Hand Limit (L.H.L)
For x<4, f(x)=mx.
xβ4βlimβf(x)=m(4)=4m(5)
Step 3: Apply Continuity Condition
Since f(x) is continuous at x=4:
xβ4βlimβf(x)=f(4)
Substitute the results:
4m=16
Solving for m:
m=416β=4
Final Answer (Part 2)
m=4
-
Continuity Condition:
f(a), limxβaββf(x), and limxβa+βf(x) must all be equal at x=a.
-
Limit Evaluation for Piecewise Functions:
Evaluate the limit from each side using the corresponding part of the piecewise function.
Summary of Steps
Part 1:
- Evaluate f(3)=n, limxβ3ββf(x)=3m, and limxβ3+βf(x)=3.
- Use continuity conditions to find m=1 and n=3.
Part 2:
- Evaluate f(4)=16 and limxβ4ββf(x)=4m.
- Use continuity conditions to find m=4.