Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

1.4 Q-5

Question Statement

Find the values of mm and nn such that the following functions are continuous at the specified points:

mx & \text{if } x < 3
n & \text{if } x = 3
-2x + 9 & \text{if } x > 3 \end{cases}$$

mx & \text{if } x < 4
x^2 & \text{if } x \geq 4 \end{cases}$$

Background and Explanation

For a function f(x)f(x) to be continuous at a point x=ax = a, it must satisfy:

  1. f(a)f(a) exists.
  2. lim⁑xβ†’aβˆ’f(x)=lim⁑xβ†’a+f(x)\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x).
  3. The value of f(a)f(a) equals the common limit.

The above properties imply that the left-hand limit (L.H.L) and right-hand limit (R.H.L) must be equal and match the function’s value at x=ax = a.

Solution

Part 1: Continuity at x=3x = 3

Step 1: Function Value at x=3x = 3

The value of f(3)f(3) is given as nn.

f(3)=n(1)f(3) = n \tag{1}

Step 2: Evaluate Right-Hand Limit (R.H.L)

For x>3x > 3, f(x)=βˆ’2x+9f(x) = -2x + 9.

lim⁑xβ†’3+f(x)=βˆ’2(3)+9=βˆ’6+9=3(2)\lim_{x \to 3^+} f(x) = -2(3) + 9 = -6 + 9 = 3 \tag{2}

Step 3: Evaluate Left-Hand Limit (L.H.L)

For x<3x < 3, f(x)=mxf(x) = mx.

lim⁑xβ†’3βˆ’f(x)=m(3)=3m(3)\lim_{x \to 3^-} f(x) = m(3) = 3m \tag{3}

Step 4: Apply Continuity Condition

Since f(x)f(x) is continuous at x=3x = 3:

lim⁑xβ†’3βˆ’f(x)=lim⁑xβ†’3+f(x)=f(3)\lim_{x \to 3^-} f(x) = \lim_{x \to 3^+} f(x) = f(3)

Substitute the results:

3m=3andn=33m = 3 \quad \text{and} \quad n = 3

Solving for mm:

m=1m = 1

Final Answer (Part 1)

m=1,n=3m = 1, \quad n = 3

Part 2: Continuity at x=4x = 4

Step 1: Function Value at x=4x = 4

For xβ‰₯4x \geq 4, f(x)=x2f(x) = x^2.

f(4)=42=16(4)f(4) = 4^2 = 16 \tag{4}

Step 2: Evaluate Left-Hand Limit (L.H.L)

For x<4x < 4, f(x)=mxf(x) = mx.

lim⁑xβ†’4βˆ’f(x)=m(4)=4m(5)\lim_{x \to 4^-} f(x) = m(4) = 4m \tag{5}

Step 3: Apply Continuity Condition

Since f(x)f(x) is continuous at x=4x = 4:

lim⁑xβ†’4βˆ’f(x)=f(4)\lim_{x \to 4^-} f(x) = f(4)

Substitute the results:

4m=164m = 16

Solving for mm:

m=164=4m = \frac{16}{4} = 4

Final Answer (Part 2)

m=4m = 4

Key Formulas or Methods Used

  1. Continuity Condition:
    f(a)f(a), lim⁑xβ†’aβˆ’f(x)\lim_{x \to a^-} f(x), and lim⁑xβ†’a+f(x)\lim_{x \to a^+} f(x) must all be equal at x=ax = a.

  2. Limit Evaluation for Piecewise Functions:
    Evaluate the limit from each side using the corresponding part of the piecewise function.

Summary of Steps

Part 1:

  1. Evaluate f(3)=nf(3) = n, lim⁑xβ†’3βˆ’f(x)=3m\lim_{x \to 3^-} f(x) = 3m, and lim⁑xβ†’3+f(x)=3\lim_{x \to 3^+} f(x) = 3.
  2. Use continuity conditions to find m=1m = 1 and n=3n = 3.

Part 2:

  1. Evaluate f(4)=16f(4) = 16 and lim⁑xβ†’4βˆ’f(x)=4m\lim_{x \to 4^-} f(x) = 4m.
  2. Use continuity conditions to find m=4m = 4.