Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

1.4 Q-6

Question Statement

Determine the value of KK such that the function

f(x)={2x+5βˆ’x+7xβˆ’2,xβ‰ 2K,x=2f(x) = \begin{cases} \frac{\sqrt{2x+5} - \sqrt{x+7}}{x-2}, & x \neq 2 K, & x = 2 \end{cases}

is continuous at x=2x = 2.

Background and Explanation

To ensure f(x)f(x) is continuous at x=2x = 2, the following conditions must hold:

  1. f(2)f(2) must exist.
  2. The left-hand limit (lim⁑xβ†’2βˆ’f(x)\lim_{x \to 2^-} f(x)) and the right-hand limit (lim⁑xβ†’2+f(x)\lim_{x \to 2^+} f(x)) must exist and be equal.
  3. These limits must equal f(2)f(2).

The challenge in this problem is to evaluate the given piecewise function’s limit as xβ†’2x \to 2, where direct substitution initially results in an indeterminate form 00\frac{0}{0}. We resolve this using algebraic manipulation (rationalizing the numerator).

Solution

Step 1: Define f(2)f(2)

The value of f(2)f(2) is given as KK.

f(2)=Kf(2) = K

Step 2: Evaluate the Limit of f(x)f(x) as x→2x \to 2

For x≠2x \neq 2,

f(x)=2x+5βˆ’x+7xβˆ’2f(x) = \frac{\sqrt{2x+5} - \sqrt{x+7}}{x-2}

Direct substitution gives 00\frac{0}{0}, so we rationalize the numerator by multiplying and dividing by 2x+5+x+7\sqrt{2x+5} + \sqrt{x+7}.

Rationalizing the Numerator:

lim⁑xβ†’2f(x)=lim⁑xβ†’2(2x+5)2βˆ’(x+7)2(xβˆ’2)(2x+5+x+7)\lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{(\sqrt{2x+5})^2 - (\sqrt{x+7})^2}{(x-2)(\sqrt{2x+5} + \sqrt{x+7})}

Simplify the numerator using the difference of squares:

(2x+5)2βˆ’(x+7)2=(2x+5)βˆ’(x+7)=xβˆ’2(\sqrt{2x+5})^2 - (\sqrt{x+7})^2 = (2x + 5) - (x + 7) = x - 2

The xβˆ’2x-2 in the numerator cancels with the xβˆ’2x-2 in the denominator:

lim⁑xβ†’2f(x)=lim⁑xβ†’212x+5+x+7\lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{1}{\sqrt{2x+5} + \sqrt{x+7}}

Substituting x=2x = 2 into the Remaining Expression:

lim⁑xβ†’2f(x)=12(2)+5+2+7=19+9\lim_{x \to 2} f(x) = \frac{1}{\sqrt{2(2) + 5} + \sqrt{2 + 7}} = \frac{1}{\sqrt{9} + \sqrt{9}} lim⁑xβ†’2f(x)=13+3=16\lim_{x \to 2} f(x) = \frac{1}{3 + 3} = \frac{1}{6}

Step 3: Apply the Continuity Condition

For continuity at x=2x = 2, we must have:

f(2)=lim⁑xβ†’2f(x)f(2) = \lim_{x \to 2} f(x)

Substitute lim⁑xβ†’2f(x)=16\lim_{x \to 2} f(x) = \frac{1}{6} and f(2)=Kf(2) = K:

K=16K = \frac{1}{6}

Final Answer:

K=16K = \frac{1}{6}

Key Formulas or Methods Used

  1. Continuity Condition:
    lim⁑xβ†’aβˆ’f(x)=lim⁑xβ†’a+f(x)=f(a)\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = f(a).

  2. Rationalization Technique:
    Multiply and divide by 2x+5+x+7\sqrt{2x+5} + \sqrt{x+7} to simplify indeterminate forms.

  3. Difference of Squares Formula:
    a2βˆ’b2=(aβˆ’b)(a+b)a^2 - b^2 = (a-b)(a+b).

Summary of Steps

  1. Define f(2)=Kf(2) = K.
  2. Evaluate lim⁑xβ†’2f(x)\lim_{x \to 2} f(x) by rationalizing the numerator.
  3. Simplify using the difference of squares and cancel terms.
  4. Substitute x=2x = 2 into the simplified expression to find lim⁑xβ†’2f(x)=16\lim_{x \to 2} f(x) = \frac{1}{6}.
  5. Apply the continuity condition K=lim⁑xβ†’2f(x)K = \lim_{x \to 2} f(x) to find K=16K = \frac{1}{6}.