Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

1.5 Q-4

Question Statement

Find the graphical solutions of the following equations:

  1. x=sin⁑(2x)x = \sin(2x)
  2. x2=cos⁑(x)\frac{x}{2} = \cos(x)
  3. 2x=tan⁑(x)2x = \tan(x)

Background and Explanation

To solve these types of problems graphically, we typically plot both sides of the equation and identify the points where the two curves intersect. The x-values of the intersection points represent the solutions to the equation. We are working with three different trigonometric equations here, each with a different type of curve. For each equation, we break the interval into smaller subintervals and calculate the corresponding values of both sides, followed by plotting and finding the intersection points.


Solution

i. x=sin⁑(2x)x = \sin(2x)

We are solving for the interval [0,2Ο€][0, 2\pi]. Consider subintervals of length Ο€6\frac{\pi}{6}. The table below shows the values for xx and sin⁑(2x)\sin(2x):

xx0∘0^\circ30∘30^\circ60∘60^\circ90∘90^\circ120∘120^\circ150∘150^\circ180∘180^\circ
sin⁑(2x)\sin(2x)032\frac{\sqrt{3}}{2}32\frac{\sqrt{3}}{2}032\frac{\sqrt{3}}{2}32\frac{\sqrt{3}}{2}0
xx210∘210^\circ240∘240^\circ270∘270^\circ300∘300^\circ330∘330^\circ360∘360^\circ
sin⁑(2x)\sin(2x)32\frac{\sqrt{3}}{2}32\frac{\sqrt{3}}{2}032\frac{\sqrt{3}}{2}32\frac{\sqrt{3}}{2}0

By drawing perpendiculars from the points on the x-axis where the curves intersect, we can read the angles at 10∘10^\circ and 55∘55^\circ, which are the solutions.

Graphical Intersection: The common solutions are x=10∘x = 10^\circ and x=55∘x = 55^\circ.

Graphical solution for x = \sin(2x)


ii. x2=cos⁑(x)\frac{x}{2} = \cos(x)

We are solving for the interval (0,Ο€)(0, \pi). Again, consider subintervals of length Ο€6\frac{\pi}{6}. The table below shows the values for x2\frac{x}{2} and cos⁑(x)\cos(x):

xx0∘0^\circ30∘30^\circ60∘60^\circ90∘90^\circ120∘120^\circ150∘150^\circ180∘180^\circ
x2\frac{x}{2}0Ο€12\frac{\pi}{12}Ο€6\frac{\pi}{6}Ο€4\frac{\pi}{4}Ο€3\frac{\pi}{3}5Ο€12\frac{5\pi}{12}Ο€2\frac{\pi}{2}
cos⁑(x)\cos(x)132\frac{\sqrt{3}}{2}12\frac{1}{2}0βˆ’12-\frac{1}{2}βˆ’32-\frac{\sqrt{3}}{2}-1

By drawing perpendiculars from the points on the x-axis where the curves intersect, we can read the angle at 67∘67^\circ, which is the solution.

Graphical Intersection: The common solution is x=67∘x = 67^\circ.

Graphical solution for \fracx2 = \cos(x)


iii. 2x=tan⁑(x)2x = \tan(x)

We are solving for the interval [0,Ο€][0, \pi]. Again, consider subintervals of length Ο€6\frac{\pi}{6}. The table below shows the values for 2x2x and tan⁑(x)\tan(x):

xx0∘0^\circ30∘30^\circ60∘60^\circ90∘90^\circ120∘120^\circ150∘150^\circ180∘180^\circ
2x2x0Ο€3\frac{\pi}{3}2Ο€3\frac{2\pi}{3}Ο€\pi4Ο€3\frac{4\pi}{3}5Ο€3\frac{5\pi}{3}2Ο€2\pi
tan⁑(x)\tan(x)013\frac{1}{\sqrt{3}}3\sqrt{3}∞\inftyβˆ’3-\sqrt{3}βˆ’13-\frac{1}{\sqrt{3}}0

By drawing perpendiculars from the points on the x-axis where the curves intersect, we can observe that the solutions are near the values 0∘0^\circ and 60∘60^\circ.

Graphical Intersection: The common solutions are x=0∘x = 0^\circ and x=60∘x = 60^\circ.

Graphical solution for 2x = \tan(x)


Key Formulas or Methods Used

  • Trigonometric identities: For the equations sin⁑(2x)\sin(2x), cos⁑(x)\cos(x), and tan⁑(x)\tan(x), their respective graphing methods are used.
  • Graphical method: Plotting the functions and finding their points of intersection visually.
  • Perpendicular dropping: Using perpendiculars from the intersection points on the x-axis to read the angles.

Summary of Steps

  1. For x=sin⁑(2x)x = \sin(2x):

    • Use subintervals of Ο€6\frac{\pi}{6}.
    • Create the table for xx and sin⁑(2x)\sin(2x).
    • Identify intersection points at 10∘10^\circ and 55∘55^\circ.
  2. For x2=cos⁑(x)\frac{x}{2} = \cos(x):

    • Use subintervals of Ο€6\frac{\pi}{6}.
    • Create the table for x2\frac{x}{2} and cos⁑(x)\cos(x).
    • Identify intersection point at 67∘67^\circ.
  3. For 2x=tan⁑(x)2x = \tan(x):

    • Use subintervals of Ο€6\frac{\pi}{6}.
    • Create the table for 2x2x and tan⁑(x)\tan(x).
    • Identify intersection points at 0∘0^\circ and 60∘60^\circ.

Reference