Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

2.1 Q-1

Question Statement

Find, by definition, the derivatives with respect to xx of the following functions:

PartExpression
i.2x2+12x^{2} + 1
ii.2x2 - \sqrt{x}
iii.1x\frac{1}{\sqrt{x}}
iv.1x3\frac{1}{x^{3}}
v.1x3\frac{1}{x-3}
vi.x(x3)x(x-3)
vii.2x4\frac{2}{x^{4}}
viii.(x+4)1/3(x+4)^{1/3}
ix.x3/2x^{3/2}
x.x1/2x^{1/2}
xi.xmx^{m}
xii.1xm\frac{1}{x^{m}}
xiii.x40x^{40}
xiv.x100x^{-100}

Part i: 2x2+12x^2 + 1

Background and Explanation

The derivative is defined as the limit of the average rate of change of the function as the interval approaches zero. Using the difference quotient, the derivative of y=2x2+1y = 2x^2 + 1 is calculated step-by-step.

Solution

Let

y=2x2+1,y+δy=2(x+δx)2+1y = 2x^2 + 1, \quad y + \delta y = 2(x + \delta x)^2 + 1

Then,

δy=2(x+δx)2+12x21\delta y = 2(x + \delta x)^2 + 1 - 2x^2 - 1

Expanding and simplifying:

δy=2(x2+δx2+2xδx)+12x21\delta y = 2(x^2 + \delta x^2 + 2x\delta x) + 1 - 2x^2 - 1 δy=4xδx+2δx2\delta y = 4x\delta x + 2\delta x^2

Dividing both sides by δx\delta x:

δyδx=4xδx+2δx2δx=4x+2δx\frac{\delta y}{\delta x} = \frac{4x\delta x + 2\delta x^2}{\delta x} = 4x + 2\delta x

Taking the limit as δx0\delta x \to 0:

dydx=4x(Answer)\frac{dy}{dx} = 4x \quad \text{(Answer)}

Key Formulas or Methods Used

  • Derivative definition:
dydx=limδx0δyδx \frac{dy}{dx} = \lim_{\delta x \to 0} \frac{\delta y}{\delta x}

Summary of Steps

  1. Write the difference quotient for y=2x2+1y = 2x^2 + 1.
  2. Expand (x+δx)2(x + \delta x)^2 and simplify.
  3. Divide by δx\delta x.
  4. Take the limit as δx0\delta x \to 0 to find the derivative.

Part ii: 2x2 - \sqrt{x}

Background and Explanation

This part involves finding the derivative of a function with a square root term. Rationalizing the numerator simplifies the calculation.

Solution

Let

f(x)=2x,f(x+δx)=2x+δxf(x) = 2 - \sqrt{x}, \quad f(x + \delta x) = 2 - \sqrt{x + \delta x}

Then,

f(x+δx)f(x)=[2x+δx][2x]f(x + \delta x) - f(x) = [2 - \sqrt{x + \delta x}] - [2 - \sqrt{x}] =x+δx+x= -\sqrt{x + \delta x} + \sqrt{x}

Rationalize the numerator:

f(x+δx)f(x)δx=(xx+δx)(x+x+δx)δx(x+x+δx)\frac{f(x + \delta x) - f(x)}{\delta x} = \frac{(\sqrt{x} - \sqrt{x + \delta x})(\sqrt{x} + \sqrt{x + \delta x})}{\delta x (\sqrt{x} + \sqrt{x + \delta x})} =x(x+δx)δx(x+x+δx)=δxδx(x+x+δx)= \frac{x - (x + \delta x)}{\delta x (\sqrt{x} + \sqrt{x + \delta x})} = \frac{-\delta x}{\delta x (\sqrt{x} + \sqrt{x + \delta x})} =1x+x+δx= \frac{-1}{\sqrt{x} + \sqrt{x + \delta x}}

Taking the limit as δx0\delta x \to 0:

dydx=12x(Answer)\frac{dy}{dx} = \frac{-1}{2\sqrt{x}} \quad \text{(Answer)}

Key Formulas or Methods Used

  • Rationalization of square root terms.
  • Derivative definition with the limit process.

Summary of Steps

  1. Write the difference quotient for f(x)=2xf(x) = 2 - \sqrt{x}.
  2. Simplify the numerator by rationalizing.
  3. Simplify the fraction and divide by δx\delta x.
  4. Take the limit as δx0\delta x \to 0 to find the derivative.

Part iii: 1x\frac{1}{\sqrt{x}}

Background and Explanation

This involves differentiating a reciprocal function with a square root. Rationalizing the numerator simplifies the process.

Solution

Let

f(x)=1x,f(x+δx)=1x+δxf(x) = \frac{1}{\sqrt{x}}, \quad f(x + \delta x) = \frac{1}{\sqrt{x + \delta x}}

Then,

f(x+δx)f(x)=1x+δx1xf(x + \delta x) - f(x) = \frac{1}{\sqrt{x + \delta x}} - \frac{1}{\sqrt{x}}

Combine terms under a single denominator:

=xx+δxxx+δx= \frac{\sqrt{x} - \sqrt{x + \delta x}}{\sqrt{x} \cdot \sqrt{x + \delta x}}

Rationalize the numerator:

xx+δxδxxx+δx=x(x+δx)δxxx+δx(x+x+δx)\frac{\sqrt{x} - \sqrt{x + \delta x}}{\delta x \cdot \sqrt{x} \cdot \sqrt{x + \delta x}} = \frac{x - (x + \delta x)}{\delta x \cdot \sqrt{x} \cdot \sqrt{x + \delta x} \cdot (\sqrt{x} + \sqrt{x + \delta x})} =δxδxxx+δx(x+x+δx)= \frac{-\delta x}{\delta x \cdot \sqrt{x} \cdot \sqrt{x + \delta x} \cdot (\sqrt{x} + \sqrt{x + \delta x})} =1xx(x+x)=12xx= \frac{-1}{\sqrt{x} \cdot \sqrt{x} \cdot (\sqrt{x} + \sqrt{x})} = \frac{-1}{2x\sqrt{x}}

Key Formulas or Methods Used

  • Rationalization of reciprocal square root terms.
  • Limit definition of derivative.

Summary of Steps

  1. Write the difference quotient for f(x)=1xf(x) = \frac{1}{\sqrt{x}}.
  2. Combine terms under a single denominator.
  3. Rationalize the numerator.
  4. Simplify and take the limit as δx0\delta x \to 0 to find the derivative.

Part iv. 1x3\frac{1}{x^3}

Background and Explanation

The derivative of a function measures the rate at which the function’s value changes with respect to changes in the input variable. Using first principles involves the limit definition of the derivative:
f(x)=limδx0f(x+δx)f(x)δx.f'(x) = \lim_{\delta x \to 0} \frac{f(x+\delta x) - f(x)}{\delta x}.

Solution

Let f(x)=1x3f(x) = \frac{1}{x^3}. Using the first principles:

f(x+δx)=1(x+δx)3,f(x+δx)f(x)=1(x+δx)31x3,=x3(x+δx)3x3(x+δx)3.\begin{aligned} f(x+\delta x) &= \frac{1}{(x+\delta x)^3}, f(x+\delta x) - f(x) &= \frac{1}{(x+\delta x)^3} - \frac{1}{x^3}, &= \frac{x^3 - (x+\delta x)^3}{x^3 \cdot (x+\delta x)^3}. \end{aligned}

Expanding (x+δx)3(x+\delta x)^3 and simplifying:

f(x)=limδx0f(x+δx)f(x)δx,=limδx0δx(3x23xδxδx2)δxx3(x+δx)3,=3x2x6,(as δx0),=3x4.\begin{aligned} f'(x) &= \lim_{\delta x \to 0} \frac{f(x+\delta x) - f(x)}{\delta x}, &= \lim_{\delta x \to 0} \frac{\delta x(-3x^2 - 3x\delta x - \delta x^2)}{\delta x \cdot x^3 \cdot (x+\delta x)^3}, &= \frac{-3x^2}{x^6}, \quad (\text{as } \delta x \to 0), &= \frac{-3}{x^4}. \end{aligned}

Key Formulas or Methods Used

  1. Derivative definition: f(x)=limδx0f(x+δx)f(x)δxf'(x) = \lim_{\delta x \to 0} \frac{f(x+\delta x) - f(x)}{\delta x}.
  2. Binomial expansion for (x+δx)3(x+\delta x)^3.

Summary of Steps

  1. Express f(x+δx)f(x+\delta x) and compute f(x+δx)f(x)f(x+\delta x) - f(x).
  2. Simplify using binomial expansion and algebraic manipulation.
  3. Divide by δx\delta x and take the limit as δx0\delta x \to 0.
  4. Final answer: 3x4\frac{-3}{x^4}.

Part v. 1x3\frac{1}{x-3}

Background and Explanation

The derivative quantifies the instantaneous rate of change of f(x)f(x) with respect to xx. Here, we use the first principles to determine f(x)f'(x) for a rational function of the form 1xa\frac{1}{x-a}.

Solution

Let f(x)=1xaf(x) = \frac{1}{x-a}. Using the first principles:

f(x+δx)=1(x+δx)a,f(x+δx)f(x)=1(x+δx)a1xa,=(δx)[(x+δx)a](xa).\begin{aligned} f(x+\delta x) &= \frac{1}{(x+\delta x)-a}, f(x+\delta x) - f(x) &= \frac{1}{(x+\delta x)-a} - \frac{1}{x-a}, &= \frac{-(\delta x)}{[(x+\delta x)-a](x-a)}. \end{aligned}

Divide by δx\delta x and take the limit as δx0\delta x \to 0:

f(x)=limδx0f(x+δx)f(x)δx,=limδx01[(x+δx)a](xa),=1(xa)2.\begin{aligned} f'(x) &= \lim_{\delta x \to 0} \frac{f(x+\delta x) - f(x)}{\delta x}, &= \lim_{\delta x \to 0} \frac{-1}{[(x+\delta x)-a](x-a)}, &= \frac{-1}{(x-a)^2}. \end{aligned}

Key Formulas or Methods Used

  1. Derivative definition: f(x)=limδx0f(x+δx)f(x)δxf'(x) = \lim_{\delta x \to 0} \frac{f(x+\delta x) - f(x)}{\delta x}.
  2. Simplification of rational expressions.

Summary of Steps

  1. Express f(x+δx)f(x+\delta x) and compute f(x+δx)f(x)f(x+\delta x) - f(x).
  2. Simplify and divide by δx\delta x.
  3. Take the limit as δx0\delta x \to 0.
  4. Final answer: 1(xa)2\frac{-1}{(x-a)^2}.

Part vi. x(x3)x(x-3)

Background and Explanation

The given function is a quadratic polynomial. Its derivative, f(x)f'(x), represents the slope of the tangent to the curve at any point xx. First principles involve the limit definition of the derivative.

Solution

Let f(x)=x(x3)=x23xf(x) = x(x-3) = x^2 - 3x. Using the first principles:

f(x+δx)=(x+δx)((x+δx)3),f(x+δx)f(x)=[(x+δx)23(x+δx)](x23x),=2xδx+(δx)23δx.\begin{aligned} f(x+\delta x) &= (x+\delta x)((x+\delta x)-3), f(x+\delta x) - f(x) &= \big[(x+\delta x)^2 - 3(x+\delta x)\big] - (x^2 - 3x), &= 2x\delta x + (\delta x)^2 - 3\delta x. \end{aligned}

Divide by δx\delta x and take the limit as δx0\delta x \to 0:

f(x)=limδx0f(x+δx)f(x)δx,=limδx02x+δx31,=2x3.\begin{aligned} f'(x) &= \lim_{\delta x \to 0} \frac{f(x+\delta x) - f(x)}{\delta x}, &= \lim_{\delta x \to 0} \frac{2x + \delta x - 3}{1}, &= 2x - 3. \end{aligned}

Key Formulas or Methods Used

  1. Expansion of (x+δx)2(x+\delta x)^2.
  2. Derivative definition: f(x)=limδx0f(x+δx)f(x)δxf'(x) = \lim_{\delta x \to 0} \frac{f(x+\delta x) - f(x)}{\delta x}.

Summary of Steps

  1. Expand f(x+δx)f(x+\delta x) and compute f(x+δx)f(x)f(x+\delta x) - f(x).
  2. Simplify the expression.
  3. Divide by δx\delta x and take the limit as δx0\delta x \to 0.
  4. Final answer: 2x32x - 3.

Part vii. 2x4\frac{2}{x^{4}}

Background and Explanation

This problem involves the difference between a function and its shifted counterpart. To solve it, we need to apply the concept of differentiating a function using the definition of the derivative, focusing on small changes in xx (denoted as δx\delta x).

Solution

We start by defining the function as f(x)=2x4f(x) = \frac{2}{x^4}. The change in the function is calculated as: f(x+δx)f(x)=2(x+δx)42x4f(x+\delta x) - f(x) = \frac{2}{(x+\delta x)^4} - \frac{2}{x^4}

Simplify the difference: =2x42(x+δx)4(x+δx)4x4= \frac{2x^4 - 2(x+\delta x)^4}{(x+\delta x)^4 \cdot x^4}

Now, expand the numerator using binomial expansion and simplify further: =2(x+δx)4x4(x4(x+δx)4)= \frac{2}{(x+\delta x)^4 x^4} \left( x^4 - (x+\delta x)^4 \right)

Next, apply the binomial expansion to the terms: =2(x+δx)4(1(1+δxx)4)= \frac{2}{(x+\delta x)^4} \left( 1 - \left(1 + \frac{\delta x}{x}\right)^4 \right)

Using the binomial series expansion: =2(x+δx)4(114δxx+higher order terms)= \frac{2}{(x+\delta x)^4} \left( 1 - 1 - \frac{4\delta x}{x} + \text{higher order terms} \right)

After simplifying and dividing by δx\delta x, we take the limit as δx0\delta x \to 0: limδx0f(x+δx)f(x)δx=8x5\lim_{\delta x \to 0} \frac{f(x+\delta x) - f(x)}{\delta x} = \frac{-8}{x^5}

Thus, the derivative is: 8x5\frac{-8}{x^5}

Key Formulas or Methods Used

  • Binomial series expansion: (1+δxx)n1+nδxx(1 + \frac{\delta x}{x})^n \approx 1 + n\frac{\delta x}{x} for small δx\delta x.
  • Definition of the derivative: f(x)=limδx0f(x+δx)f(x)δxf'(x) = \lim_{\delta x \to 0} \frac{f(x+\delta x) - f(x)}{\delta x}.

Summary of Steps

  1. Define the function: f(x)=2x4f(x) = \frac{2}{x^4}.
  2. Find the difference between f(x+δx)f(x+\delta x) and f(x)f(x).
  3. Expand the numerator using binomial expansion.
  4. Simplify the expression.
  5. Take the limit as δx0\delta x \to 0 to find the derivative.
  6. The derivative is: 8x5\frac{-8}{x^5}.

Part viii. (x+4)13(x+4)^{\frac{1}{3}}

Background and Explanation

This problem requires us to find the derivative of a function of the form (x+4)13(x+4)^{\frac{1}{3}}, which involves using binomial expansion for fractional powers.

Solution

Let y=(x+4)13y = (x + 4)^{\frac{1}{3}}. The change in yy is: y+δy=(x+δx+4)13y + \delta y = (x + \delta x + 4)^{\frac{1}{3}}

Subtracting yy from both sides: (y+δy)y=(x+4+δx)13(x+4)13(y + \delta y) - y = (x + 4 + \delta x)^{\frac{1}{3}} - (x + 4)^{\frac{1}{3}}

Factor out (x+4)13(x + 4)^{\frac{1}{3}}: =(x+4)13[(x+4+δxx+4)131]= (x + 4)^{\frac{1}{3}} \left[ \left( \frac{x + 4 + \delta x}{x + 4} \right)^{\frac{1}{3}} - 1 \right]

Using binomial expansion for small δx\delta x: =(x+4)13[13δxx+4]= (x + 4)^{\frac{1}{3}} \left[ \frac{1}{3} \cdot \frac{\delta x}{x + 4} \right]

Now divide by δx\delta x and take the limit as δx0\delta x \to 0: limδx0δyδx=13(x+4)23\lim_{\delta x \to 0} \frac{\delta y}{\delta x} = \frac{1}{3} \cdot (x + 4)^{\frac{-2}{3}}

Thus, the derivative is: 13(x+4)23\frac{1}{3}(x + 4)^{-\frac{2}{3}}

Key Formulas or Methods Used

  • Binomial expansion: (1+δxx)n1+nδxx(1 + \frac{\delta x}{x})^n \approx 1 + n \cdot \frac{\delta x}{x} for small δx\delta x.
  • Definition of the derivative: f(x)=limδx0f(x+δx)f(x)δxf'(x) = \lim_{\delta x \to 0} \frac{f(x+\delta x) - f(x)}{\delta x}.

Summary of Steps

  1. Define the function: y=(x+4)13y = (x + 4)^{\frac{1}{3}}.
  2. Find the difference between y+δyy + \delta y and yy.
  3. Factor out (x+4)13(x + 4)^{\frac{1}{3}}.
  4. Use binomial expansion to simplify the expression.
  5. Take the limit as δx0\delta x \to 0.
  6. The derivative is: 13(x+4)23\frac{1}{3} (x + 4)^{-\frac{2}{3}}.

Part ix. x32x^{\frac{3}{2}}

Background and Explanation

This problem requires us to find the derivative of a function of the form x32x^{\frac{3}{2}}, which involves using the binomial series expansion for small changes in xx.

Solution

Let y=x32y = x^{\frac{3}{2}}. The change in yy is: y+δy=(x+δx)32y + \delta y = (x + \delta x)^{\frac{3}{2}}

Subtracting yy from both sides: (y+δy)y=(x+δx)32x32(y + \delta y) - y = (x + \delta x)^{\frac{3}{2}} - x^{\frac{3}{2}}

Factor out x32x^{\frac{3}{2}}: =x32[(1+δxx)321]= x^{\frac{3}{2}} \left[ \left(1 + \frac{\delta x}{x}\right)^{\frac{3}{2}} - 1 \right]

Using the binomial expansion: =x32[1+32δxx]= x^{\frac{3}{2}} \left[ 1 + \frac{3}{2} \cdot \frac{\delta x}{x} \right]

Now divide by δx\delta x and take the limit as δx0\delta x \to 0: limδx0δyδx=32x12\lim_{\delta x \to 0} \frac{\delta y}{\delta x} = \frac{3}{2} x^{\frac{1}{2}}

Thus, the derivative is: 32x\frac{3}{2} \sqrt{x}

Key Formulas or Methods Used

  • Binomial expansion: (1+δxx)n1+nδxx(1 + \frac{\delta x}{x})^n \approx 1 + n \cdot \frac{\delta x}{x} for small δx\delta x.
  • Definition of the derivative: f(x)=limδx0f(x+δx)f(x)δxf'(x) = \lim_{\delta x \to 0} \frac{f(x+\delta x) - f(x)}{\delta x}.

Summary of Steps

  1. Define the function: y=x32y = x^{\frac{3}{2}}.
  2. Find the difference between y+δyy + \delta y and yy.
  3. Factor out x32x^{\frac{3}{2}}.
  4. Use binomial expansion to simplify the expression.
  5. Take the limit as δx0\delta x \to 0.
  6. The derivative is: 32x\frac{3}{2} \sqrt{x}.

Part x. x52x^{\frac{5}{2}}

Background and Explanation

This problem involves differentiating a function of the form x52x^{\frac{5}{2}} using the binomial series expansion for small changes in xx.

Solution

Let y=x52y = x^{\frac{5}{2}}. The change in yy is: (y+δy)y=(x+δx)52x52(y + \delta y) - y = (x + \delta x)^{\frac{5}{2}} - x^{\frac{5}{2}}

Factor out x52x^{\frac{5}{2}}: =x52[(1+δxx)521]= x^{\frac{5}{2}} \left[ \left(1 + \frac{\delta x}{x}\right)^{\frac{5}{2}} - 1 \right]

Using the binomial expansion: =x52[1+52δxx]= x^{\frac{5}{2}} \left[ 1 + \frac{5}{2} \cdot \frac{\delta x}{x} \right]

Now divide by δx\delta x and take the limit as δx0\delta x \to 0: limδx0δyδx=52x32\lim_{\delta x \to 0} \frac{\delta y}{\delta x} = \frac{5}{2} x^{\frac{3}{2}}

Thus, the derivative is: 52x32\frac{5}{2} x^{\frac{3}{2}}

Key Formulas or Methods Used

  • Binomial expansion: (1+δxx)n1+nδxx(1 + \frac{\delta x}{x})^n \approx 1 + n \cdot \frac{\delta x}{x} for small δx\delta x.
  • Definition of the derivative: f(x)=limδx0f(x+δx)f(x)δxf'(x) = \lim_{\delta x \to 0} \frac{f(x+\delta x) - f(x)}{\delta x}.

Summary of Steps

  1. Define the function: y=x52y = x^{\frac{5}{2}}.
  2. Find the difference between y+δyy + \delta y and yy.
  3. Factor out x52x^{\frac{5}{2}}.
  4. Use binomial expansion to simplify the expression.
  5. Take the limit as δx0\delta x \to 0.
  6. The derivative is: 52x32\frac{5}{2} x^{\frac{3}{2}}.

Part xi. xmx^{m}

Background and Explanation

This problem involves finding the derivative of a function in the form of xmx^{m}, where mm is a natural number. The derivative can be determined using binomial expansion for small increments and applying limits.

Solution

  1. Let the function be y=xmy = x^m.
  2. The new value after an increment is y+δy=(x+δx)my + \delta y = (x + \delta x)^m.
  3. Find the difference:
(y+δy)y=(x+δx)mxm (y + \delta y) - y = (x + \delta x)^m - x^m
  1. Factor out xmx^m:
=xm((1+δxx)m1) = x^m \left( \left( 1 + \frac{\delta x}{x} \right)^m - 1 \right)
  1. Apply the binomial expansion:
=xm[1+mδxx+m(m1)2!(δxx)21] = x^m \left[ 1 + m \cdot \frac{\delta x}{x} + \frac{m(m-1)}{2!} \left(\frac{\delta x}{x}\right)^2 - 1 \right]
  1. Divide by δx\delta x and take the limit as δx0\delta x \to 0:
limδx0δyδx=limδx0(mx+m(m1)2!δxx2) \lim_{\delta x \to 0} \frac{\delta y}{\delta x} = \lim_{\delta x \to 0} \left( \frac{m}{x} + \frac{m(m-1)}{2!} \frac{\delta x}{x^2} \right)
  1. Simplify the expression:
=xmmx=mxm1 = x^m \cdot \frac{m}{x} = m \cdot x^{m-1}

Key Formulas or Methods Used

  • Binomial expansion: (1+δxx)m1+mδxx\left(1 + \frac{\delta x}{x}\right)^m \approx 1 + m \cdot \frac{\delta x}{x} for small δx\delta x.
  • Definition of the derivative: f(x)=limδx0f(x+δx)f(x)δxf'(x) = \lim_{\delta x \to 0} \frac{f(x + \delta x) - f(x)}{\delta x}.

Summary of Steps

  1. Define the function y=xmy = x^m.
  2. Find the difference (y+δy)y(y + \delta y) - y.
  3. Factor out xmx^m.
  4. Use binomial expansion to simplify the expression.
  5. Take the limit as δx0\delta x \to 0.
  6. The derivative is mxm1m \cdot x^{m-1}.

Part xii. 1xm\frac{1}{x^{m}}

Background and Explanation

This problem involves finding the derivative of a function in the form of 1xm\frac{1}{x^m}. It can be solved by applying the same principles, including binomial expansion and the limit definition of the derivative.

Solution

  1. Let the function be y=1xmy = \frac{1}{x^m}.
  2. The new value after an increment is y+δy=1(x+δx)my + \delta y = \frac{1}{(x + \delta x)^m}.
  3. Find the difference:
(y+δy)y=1(x+δx)m1xm (y + \delta y) - y = \frac{1}{(x + \delta x)^m} - \frac{1}{x^m}
  1. Factor out xmx^m from the numerator:
=xm[1(1+δxx)m](x+δx)mxm = \frac{x^m \left[ 1 - \left( 1 + \frac{\delta x}{x} \right)^m \right]}{(x + \delta x)^m x^m}
  1. Apply binomial series expansion:
=xm[11mδxx+](x+δx)mxm = \frac{x^m \left[ 1 - 1 - m \cdot \frac{\delta x}{x} + \dots \right]}{(x + \delta x)^m x^m}
  1. Divide by δx\delta x and take the limit as δx0\delta x \to 0:
limδx0δyδx=limδx0mx(x+δx)m \lim_{\delta x \to 0} \frac{\delta y}{\delta x} = \lim_{\delta x \to 0} \frac{-m}{x(x + \delta x)^m}
  1. Simplify the expression:
=mxxm=mxm1 = \frac{-m}{x x^m} = -m x^{-m-1}

Key Formulas or Methods Used

  • Binomial expansion: (1+δxx)m1+mδxx\left(1 + \frac{\delta x}{x}\right)^m \approx 1 + m \cdot \frac{\delta x}{x} for small δx\delta x.
  • Definition of the derivative: f(x)=limδx0f(x+δx)f(x)δxf'(x) = \lim_{\delta x \to 0} \frac{f(x + \delta x) - f(x)}{\delta x}.

Summary of Steps

  1. Define the function y=1xmy = \frac{1}{x^m}.
  2. Find the difference (y+δy)y(y + \delta y) - y.
  3. Factor out xmx^m.
  4. Apply binomial expansion to simplify.
  5. Take the limit as δx0\delta x \to 0.
  6. The derivative is mxm1-m x^{-m-1}.

Part xiii. x40x^{40}

Background and Explanation

This problem involves finding the derivative of a function in the form of x40x^{40}. As with other powers of xx, we apply binomial expansion and the limit definition of the derivative.

Solution

  1. Let the function be y=x40y = x^{40}.
  2. The new value after an increment is y+δy=(x+δx)40y + \delta y = (x + \delta x)^{40}.
  3. Find the difference:
(y+δy)y=(x+δx)40x40 (y + \delta y) - y = (x + \delta x)^{40} - x^{40}
  1. Factor out x40x^{40}:
=x40[(1+δxx)401] = x^{40} \left[ \left( 1 + \frac{\delta x}{x} \right)^{40} - 1 \right]
  1. Apply binomial expansion:
=x40[40δxx+] = x^{40} \left[ 40 \cdot \frac{\delta x}{x} + \dots \right]
  1. Divide by δx\delta x and take the limit as δx0\delta x \to 0:
limδx0δyδx=40x39 \lim_{\delta x \to 0} \frac{\delta y}{\delta x} = 40 \cdot x^{39}

Key Formulas or Methods Used

  • Binomial expansion: (1+δxx)401+40δxx\left(1 + \frac{\delta x}{x}\right)^{40} \approx 1 + 40 \cdot \frac{\delta x}{x}.
  • Definition of the derivative: f(x)=limδx0f(x+δx)f(x)δxf'(x) = \lim_{\delta x \to 0} \frac{f(x + \delta x) - f(x)}{\delta x}.

Summary of Steps

  1. Define the function y=x40y = x^{40}.
  2. Find the difference (y+δy)y(y + \delta y) - y.
  3. Factor out x40x^{40}.
  4. Apply binomial expansion to simplify.
  5. Take the limit as δx0\delta x \to 0.
  6. The derivative is 40x3940 x^{39}.

Part xiv. x100x^{-100}

Background and Explanation

This problem involves finding the derivative of a function in the form of x100x^{-100}. We use binomial expansion and the limit definition of the derivative, taking care of the negative exponent.

Solution

  1. Let the function be y=x100y = x^{-100}.
  2. The new value after an increment is y+δy=(x+δx)100y + \delta y = (x + \delta x)^{-100}.
  3. Find the difference:
(y+δy)y=(x+δx)100x100 (y + \delta y) - y = (x + \delta x)^{-100} - x^{-100}
  1. Factor out x100x^{-100}:
=x100[1100δxx+] = x^{-100} \left[ 1 - \frac{100 \delta x}{x} + \dots \right]
  1. Apply binomial expansion:
=x100[100δxx+] = x^{-100} \left[ -\frac{100 \delta x}{x} + \dots \right]
  1. Divide by δx\delta x and take the limit as δx0\delta x \to 0:
\lim_{\delta x \to 0} \frac{\delta y}{\delta x} = -100 x^{-101} $$ Answer ## **Key Formulas or Methods Used** - Binomial expansion: $\left(1 + \frac{\delta x}{x}\right)^{-100} \approx 1 - 100 \cdot \frac{\delta x}{x}$. - Definition of the derivative: $f'(x) = \lim_{\delta x \to 0} \frac{f(x + \delta x) - f(x)}{\delta x}$. ## **Summary of Steps** 1. Define the function $y = x^{-100}$. 2. Find the difference $(y + \delta y) - y$. 3. Factor out $x^{-100}$. 4. Apply binomial expansion to simplify. 5. Take the limit as $\delta x \to 0$. 6. The derivative is $-100 x^{-101}$. --- > Reference Video can be found on [[01_Ex 2.1]]