Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

2.1 Q-2

Question Statement

Find dydx\frac{d y}{d x} from first principles for the following functions:

i. x+2\sqrt{x+2}

ii. 1x+a\frac{1}{\sqrt{x+a}}


Background and Explanation

To solve these problems using first principles, we need to apply the definition of a derivative:

dydx=limδx0y+δyyδx\frac{d y}{d x} = \lim_{\delta x \to 0} \frac{y + \delta y - y}{\delta x}

This involves finding the difference between the function value at x+δxx + \delta x and the function value at xx, then dividing by δx\delta x and taking the limit as δx\delta x approaches zero.

For both functions, we will use the binomial expansion to simplify expressions and calculate the derivative.


Solution

i. For y=x+2y = \sqrt{x+2}

  1. Set up the expression for δy\delta y:

    Given y=x+2y = \sqrt{x+2}, the change in yy for a small change in xx is:

y+δy=x+δx+2 y + \delta y = \sqrt{x + \delta x + 2}
  1. Simplify the difference δy\delta y:

    Subtract yy from both sides:

(y+δy)y=x+δx+2x+2 (y + \delta y) - y = \sqrt{x + \delta x + 2} - \sqrt{x + 2}

Factor the expression:

=(x+2)12[(1+δxx+2)121] = (x+2)^{\frac{1}{2}} \left[\left(1 + \frac{\delta x}{x + 2}\right)^{\frac{1}{2}} - 1\right]
  1. Apply binomial expansion:

    Expand the term using the binomial series approximation for small δx\delta x:

=(x+2)12[(1+δxx+2)12+(121)2!(δxx+2)21] = (x+2)^{\frac{1}{2}} \left[\left(1 + \frac{\delta x}{x + 2}\right)^{\frac{1}{2}} + \frac{\left(\frac{1}{2}-1\right)}{2!} \left(\frac{\delta x}{x+2}\right)^2 - 1 \right]
  1. Divide by δx\delta x and take the limit:

    Divide both sides by δx\delta x and take the limit as δx0\delta x \to 0:

=limδx0(x+2)12[12(x+2)δx8(x+2)2] = \lim_{\delta x \to 0} (x + 2)^{\frac{1}{2}} \left[\frac{1}{2(x + 2)} - \frac{\delta x}{8(x + 2)^2} \right]

The second term vanishes as δx0\delta x \to 0, leaving:

=12(x+2)(x+2)12 = \frac{1}{2(x + 2)(x + 2)^{\frac{1}{2}}}

Simplifying, we get:

=12x+2 = \frac{1}{2\sqrt{x + 2}}

Final Answer for i:

dydx=12x+2\frac{d y}{d x} = \frac{1}{2 \sqrt{x + 2}}

ii. For y=1x+ay = \frac{1}{\sqrt{x + a}}

  1. Set up the expression for δy\delta y:

    Given y=1x+ay = \frac{1}{\sqrt{x + a}}, the change in yy for a small change in xx is:

y+δy=1x+δx+a y + \delta y = \frac{1}{\sqrt{x + \delta x + a}}
  1. Simplify the difference δy\delta y:

    Subtract yy from both sides:

(y+δy)y=1x+δx+a1x+a (y + \delta y) - y = \frac{1}{\sqrt{x + \delta x + a}} - \frac{1}{\sqrt{x + a}}
  1. Expand using binomial series:

    Apply the binomial expansion for small δx\delta x:

=(x+a)12δx[12(x+a)+δx(x+a)2] = (x + a)^{\frac{1}{2}} \delta x \left[ \frac{-1}{2(x + a)} + \frac{\delta x}{(x + a)^2} \right]
  1. Divide by δx\delta x and take the limit:

    Divide both sides by δx\delta x and take the limit as δx0\delta x \to 0:

limδx0(x+a)12[12(x+a)+δx(x+a)2] \lim_{\delta x \to 0} (x + a)^{\frac{1}{2}} \left[ \frac{-1}{2(x + a)} + \frac{\delta x}{(x + a)^2} \right]

The second term vanishes, leaving:

=12(x+a)(x+a)12 = \frac{-1}{2(x + a)(x + a)^{\frac{1}{2}}}

Simplifying, we get:

=12(x+a)32 = \frac{-1}{2(x + a)^{\frac{3}{2}}}

Final Answer for ii:

dydx=12(x+a)32\frac{d y}{d x} = \frac{-1}{2(x + a)^{\frac{3}{2}}}

Key Formulas or Methods Used

  • Definition of the derivative (first principles):
dydx=limδx0y+δyyδx \frac{d y}{d x} = \lim_{\delta x \to 0} \frac{y + \delta y - y}{\delta x}
  • Binomial series expansion for small δx\delta x:
(1+u)n1+nufor smallu (1 + u)^n \approx 1 + n u \quad \text{for small} \quad u

Summary of Steps

For y=x+2y = \sqrt{x + 2}:

  1. Express y+δy=x+δx+2y + \delta y = \sqrt{x + \delta x + 2}.
  2. Subtract yy and simplify the difference.
  3. Apply the binomial expansion for small δx\delta x.
  4. Divide by δx\delta x and take the limit as δx0\delta x \to 0.
  5. Simplify to get the derivative.

For y=1x+ay = \frac{1}{\sqrt{x + a}}:

  1. Express y+δy=1x+δx+ay + \delta y = \frac{1}{\sqrt{x + \delta x + a}}.
  2. Subtract yy and simplify the difference.
  3. Apply the binomial expansion for small δx\delta x.
  4. Divide by δx\delta x and take the limit as δx0\delta x \to 0.
  5. Simplify to get the derivative.

Reference Video can be found in 01_Ex 2.1