Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

2.2 Q-1

Question Statement

Find the derivatives of the following expressions from the first principles with respect to their respective independent variables:

i. (ax+b)3(a x + b)^3

ii. (2x+3)5(2x + 3)^5

iii. (3t+2)βˆ’2(3t + 2)^{-2}

iv. (ax+b)βˆ’5(a x + b)^{-5}

v. y=1(az+b)7y = \frac{1}{(a z + b)^7}


Background and Explanation

To solve these problems, we’ll use the method of first principles (also called the definition of the derivative). The derivative of a function f(x)f(x) with respect to xx is defined as:

fβ€²(x)=lim⁑δxβ†’0f(x+Ξ΄x)βˆ’f(x)Ξ΄xf'(x) = \lim_{\delta x \to 0} \frac{f(x + \delta x) - f(x)}{\delta x}

This involves finding the change in the function when xx is increased by a small amount, Ξ΄x\delta x, and then taking the limit as Ξ΄x\delta x approaches 0. We will apply this definition to each given expression.


Solution

i. (ax+b)3(a x + b)^3

Let: y=(ax+b)3y = (a x + b)^3

  1. Find Ξ΄y\delta y:
y+Ξ΄y=(a(x+Ξ΄x)+b)3 y + \delta y = (a(x + \delta x) + b)^3

Expanding:

Ξ΄y=[(a(x+Ξ΄x)+b)3βˆ’(ax+b)3] \delta y = \left[(a(x + \delta x) + b)^3 - (a x + b)^3\right]

Expanding the binomial:

Ξ΄y=aΞ΄x[3(ax+b)2] \delta y = a \delta x \left[ 3(a x + b)^2 \right]
  1. Take the limit as δx→0\delta x \to 0:
lim⁑δxβ†’0Ξ΄yΞ΄x=3a(ax+b)2 \lim_{\delta x \to 0} \frac{\delta y}{\delta x} = 3a(a x + b)^2

Thus, the derivative is: ddx(ax+b)3=3a(ax+b)2\frac{d}{dx} (a x + b)^3 = 3a(a x + b)^2

ii. (2x+3)5(2x + 3)^5

Let: y=(2x+3)5y = (2x + 3)^5

  1. Find Ξ΄y\delta y:
Ξ΄y=(2(x+Ξ΄x)+3)5βˆ’(2x+3)5 \delta y = (2(x + \delta x) + 3)^5 - (2x + 3)^5
  1. Apply the binomial expansion:
Ξ΄y=2Ξ΄x[5(2x+3)4+10(2x+3)3(2x)+⋯ ] \delta y = 2 \delta x \left[5(2x + 3)^4 + 10(2x + 3)^3(2x) + \cdots \right]
  1. Take the limit as δx→0\delta x \to 0:
ddx(2x+3)5=10(2x+3)4 \frac{d}{dx} (2x + 3)^5 = 10(2x + 3)^4

Thus, the derivative is: ddx(2x+3)5=10(2x+3)4\frac{d}{dx} (2x + 3)^5 = 10(2x + 3)^4

iii. (3t+2)βˆ’2(3t + 2)^{-2}

Let: y=(3t+2)βˆ’2y = (3t + 2)^{-2}

  1. Find Ξ΄y\delta y:
Ξ΄y=(3(t+Ξ΄t)+2)βˆ’2βˆ’(3t+2)βˆ’2 \delta y = (3(t + \delta t) + 2)^{-2} - (3t + 2)^{-2}

Simplifying the expression:

Ξ΄y=βˆ’2(3t+2)βˆ’3β‹…3Ξ΄t \delta y = -2(3t + 2)^{-3} \cdot 3 \delta t
  1. Take the limit as δt→0\delta t \to 0:
ddt(3t+2)βˆ’2=βˆ’6(3t+2)βˆ’3 \frac{d}{dt} (3t + 2)^{-2} = -6(3t + 2)^{-3}

Thus, the derivative is: ddt(3t+2)βˆ’2=βˆ’6(3t+2)βˆ’3\frac{d}{dt} (3t + 2)^{-2} = -6(3t + 2)^{-3}

iv. (ax+b)βˆ’5(a x + b)^{-5}

Let: y=(ax+b)βˆ’5y = (a x + b)^{-5}

  1. Find Ξ΄y\delta y:
Ξ΄y=(a(x+Ξ΄x)+b)βˆ’5βˆ’(ax+b)βˆ’5 \delta y = (a(x + \delta x) + b)^{-5} - (a x + b)^{-5}
  1. Apply the binomial expansion:
Ξ΄y=βˆ’5aΞ΄x(ax+b)βˆ’6 \delta y = -5 a \delta x (a x + b)^{-6}
  1. Take the limit as δx→0\delta x \to 0:
ddx(ax+b)βˆ’5=βˆ’5a(ax+b)βˆ’6 \frac{d}{dx} (a x + b)^{-5} = -5a(a x + b)^{-6}

Thus, the derivative is: ddx(ax+b)βˆ’5=βˆ’5a(ax+b)βˆ’6\frac{d}{dx} (a x + b)^{-5} = -5a(a x + b)^{-6}

v. y=1(az+b)7y = \frac{1}{(a z + b)^7}

Let: y=(az+b)βˆ’7y = (a z + b)^{-7}

  1. Find Ξ΄y\delta y:
Ξ΄y=(a(z+Ξ΄z)+b)βˆ’7βˆ’(az+b)βˆ’7 \delta y = (a(z + \delta z) + b)^{-7} - (a z + b)^{-7}
  1. Apply the binomial expansion:
Ξ΄y=βˆ’7aΞ΄z(az+b)βˆ’8 \delta y = -7 a \delta z (a z + b)^{-8}
  1. Take the limit as δz→0\delta z \to 0:
ddz(az+b)βˆ’7=βˆ’7a(az+b)βˆ’8 \frac{d}{dz} (a z + b)^{-7} = -7a(a z + b)^{-8}

Thus, the derivative is: ddz(az+b)βˆ’7=βˆ’7a(az+b)βˆ’8\frac{d}{dz} (a z + b)^{-7} = -7a(a z + b)^{-8}


Key Formulas or Methods Used

  • First Principles Definition of Derivative:
ddxf(x)=lim⁑δxβ†’0f(x+Ξ΄x)βˆ’f(x)Ξ΄x \frac{d}{dx} f(x) = \lim_{\delta x \to 0} \frac{f(x + \delta x) - f(x)}{\delta x}
  • Binomial Expansion for terms like (ax+b)n(a x + b)^n or (ax+b)βˆ’n(a x + b)^{-n} when simplifying the terms involving small changes (Ξ΄x\delta x or Ξ΄t\delta t).

Summary of Steps

  1. Write the function and express it as y=f(x)y = f(x).
  2. Apply the first principles definition: Calculate Ξ΄y=f(x+Ξ΄x)βˆ’f(x)\delta y = f(x + \delta x) - f(x).
  3. Expand the expression using binomial expansion if necessary.
  4. Divide by δx\delta x and take the limit as δx→0\delta x \to 0.
  5. Simplify the expression to find the derivative.
  6. Write the final answer for the derivative.