Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

2.3 Q-10

Question Statement

Differentiate the following function with respect to xx:
Y=1+x1βˆ’xY = \frac{\sqrt{1+x}}{\sqrt{1-x}}


Background and Explanation

This is a quotient of two functions, so we will apply the quotient rule. The quotient rule states:
ddx(u(x)v(x))=uβ€²(x)v(x)βˆ’u(x)vβ€²(x)v(x)2\frac{d}{dx} \left( \frac{u(x)}{v(x)} \right) = \frac{u'(x)v(x) - u(x)v'(x)}{v(x)^2}

Here, u(x)u(x) and v(x)v(x) represent the numerator and denominator functions, respectively. We will also use the derivative of the square root function:
ddxf(x)=fβ€²(x)2f(x)\frac{d}{dx} \sqrt{f(x)} = \frac{f'(x)}{2\sqrt{f(x)}}


Solution

Let: Y=1+x1βˆ’xY = \frac{\sqrt{1+x}}{\sqrt{1-x}}

To differentiate YY with respect to xx, we use the quotient rule: dYdx=v(x)β‹…uβ€²(x)βˆ’u(x)β‹…vβ€²(x)v(x)2\frac{dY}{dx} = \frac{v(x) \cdot u'(x) - u(x) \cdot v'(x)}{v(x)^2}

Here:

  • u(x)=1+xu(x) = \sqrt{1+x} and v(x)=1βˆ’xv(x) = \sqrt{1-x}

Step 1: Differentiate u(x)u(x)

u(x)=1+xβ€…β€ŠβŸΉβ€…β€Šuβ€²(x)=121+xu(x) = \sqrt{1+x} \implies u'(x) = \frac{1}{2\sqrt{1+x}}

Step 2: Differentiate v(x)v(x)

v(x)=1βˆ’xβ€…β€ŠβŸΉβ€…β€Švβ€²(x)=βˆ’121βˆ’xv(x) = \sqrt{1-x} \implies v'(x) = \frac{-1}{2\sqrt{1-x}}

Step 3: Apply the quotient rule

Substitute u(x)u(x), uβ€²(x)u'(x), v(x)v(x), and vβ€²(x)v'(x) into the quotient rule: dYdx=1βˆ’xβ‹…121+xβˆ’1+xβ‹…βˆ’121βˆ’x(1βˆ’x)\frac{dY}{dx} = \frac{\sqrt{1-x} \cdot \frac{1}{2\sqrt{1+x}} - \sqrt{1+x} \cdot \frac{-1}{2\sqrt{1-x}}}{(1-x)}

Step 4: Simplify the numerator

The numerator becomes: 1βˆ’xβ‹…121+x+1+xβ‹…121βˆ’x\sqrt{1-x} \cdot \frac{1}{2\sqrt{1+x}} + \sqrt{1+x} \cdot \frac{1}{2\sqrt{1-x}}

Combine under a common denominator: =(1βˆ’x)+(1+x)2(1+x)(1βˆ’x)= \frac{(1-x) + (1+x)}{2\sqrt{(1+x)(1-x)}}

Simplify further: =22(1+x)(1βˆ’x)= \frac{2}{2\sqrt{(1+x)(1-x)}}

Step 5: Simplify the fraction

The result is: dYdx=11+xβ‹…1βˆ’x\frac{dY}{dx} = \frac{1}{\sqrt{1+x} \cdot \sqrt{1-x}}


Key Formulas or Methods Used

  1. Quotient Rule:
    ddx(u(x)v(x))=uβ€²(x)v(x)βˆ’u(x)vβ€²(x)v(x)2\frac{d}{dx} \left( \frac{u(x)}{v(x)} \right) = \frac{u'(x)v(x) - u(x)v'(x)}{v(x)^2}
  2. Derivative of a Square Root:
    ddxf(x)=fβ€²(x)2f(x)\frac{d}{dx} \sqrt{f(x)} = \frac{f'(x)}{2\sqrt{f(x)}}

Summary of Steps

  1. Identify u(x)u(x) and v(x)v(x):
    • u(x)=1+xu(x) = \sqrt{1+x} and v(x)=1βˆ’xv(x) = \sqrt{1-x}.
  2. Differentiate u(x)u(x) and v(x)v(x):
    • uβ€²(x)=121+xu'(x) = \frac{1}{2\sqrt{1+x}}
    • vβ€²(x)=βˆ’121βˆ’xv'(x) = \frac{-1}{2\sqrt{1-x}}.
  3. Apply the quotient rule to find dYdx\frac{dY}{dx}.
  4. Simplify the expression: dydx=11+x(1βˆ’x)1/2\frac{dy}{dx} = \frac{1}{\sqrt{1+x}(1-x)^{1/2}}

Final Answer: dYdx=11+xβ‹…1βˆ’x\frac{dY}{dx} = \frac{1}{\sqrt{1+x} \cdot \sqrt{1-x}}