Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

2.3 Q-11

Question Statement

Differentiate the following function with respect to xx:
y=2xβˆ’1x2+1y = \frac{2x - 1}{\sqrt{x^2 + 1}}


Background and Explanation

This problem involves the differentiation of a rational function containing a square root in the denominator. To solve this, we apply the quotient rule and use chain rule techniques to handle the square root term.

Key Differentiation Rules:

  1. Quotient Rule:
    If y=uvy = \frac{u}{v}, then:
    dydx=vβ‹…dudxβˆ’uβ‹…dvdxv2\frac{dy}{dx} = \frac{v \cdot \frac{du}{dx} - u \cdot \frac{dv}{dx}}{v^2}
  2. Chain Rule for Square Roots:
    If f(x)=g(x)f(x) = \sqrt{g(x)}, then:
    ddxg(x)=12g(x)β‹…dg(x)dx\frac{d}{dx}\sqrt{g(x)} = \frac{1}{2\sqrt{g(x)}} \cdot \frac{dg(x)}{dx}
  3. Simplifying algebraic expressions is critical for clarity in the solution.

Solution

Step 1: Identify the numerator and denominator

The function is:
y=2xβˆ’1x2+1y = \frac{2x - 1}{\sqrt{x^2 + 1}}
Here:

  • Numerator: u=2xβˆ’1u = 2x - 1
  • Denominator: v=x2+1v = \sqrt{x^2 + 1}

Step 2: Apply the quotient rule

Using the quotient rule:
dydx=vβ‹…dudxβˆ’uβ‹…dvdxv2\frac{dy}{dx} = \frac{v \cdot \frac{du}{dx} - u \cdot \frac{dv}{dx}}{v^2}

a) Differentiate u=2xβˆ’1u = 2x - 1:

dudx=2\frac{du}{dx} = 2

b) Differentiate v=x2+1v = \sqrt{x^2 + 1}:

Using the chain rule: dvdx=12x2+1β‹…ddx(x2+1)\frac{dv}{dx} = \frac{1}{2\sqrt{x^2 + 1}} \cdot \frac{d}{dx}(x^2 + 1) dvdx=12x2+1β‹…2x\frac{dv}{dx} = \frac{1}{2\sqrt{x^2 + 1}} \cdot 2x dvdx=xx2+1\frac{dv}{dx} = \frac{x}{\sqrt{x^2 + 1}}

Step 3: Substitute into the quotient rule

Substitute uu, vv, and their derivatives: dydx=x2+1β‹…2βˆ’(2xβˆ’1)β‹…xx2+1(x2+1)2\frac{dy}{dx} = \frac{\sqrt{x^2 + 1} \cdot 2 - (2x - 1) \cdot \frac{x}{\sqrt{x^2 + 1}}}{(\sqrt{x^2 + 1})^2}

Step 4: Simplify the numerator

Expand the terms in the numerator:

  1. First term: 2x2+12\sqrt{x^2 + 1}
  2. Second term: (2xβˆ’1)β‹…xx2+1=x(2xβˆ’1)x2+1(2x - 1) \cdot \frac{x}{\sqrt{x^2 + 1}} = \frac{x(2x - 1)}{\sqrt{x^2 + 1}}

Combine terms: Numerator=2x2+1βˆ’x(2xβˆ’1)x2+1\text{Numerator} = 2\sqrt{x^2 + 1} - \frac{x(2x - 1)}{\sqrt{x^2 + 1}}
Express the numerator over a common denominator: Numerator=2(x2+1)βˆ’x(2xβˆ’1)x2+1\text{Numerator} = \frac{2(x^2 + 1) - x(2x - 1)}{\sqrt{x^2 + 1}}

Expand and simplify: Numerator=2x2+2βˆ’2x2+xx2+1\text{Numerator} = \frac{2x^2 + 2 - 2x^2 + x}{\sqrt{x^2 + 1}}
Numerator=x+2x2+1\text{Numerator} = \frac{x + 2}{\sqrt{x^2 + 1}}

Step 5: Write the final expression

The denominator is (x2+1)2=x2+1(\sqrt{x^2 + 1})^2 = x^2 + 1. The derivative becomes: dydx=x+2(x2+1)3/2\frac{dy}{dx} = \frac{x + 2}{(x^2 + 1)^{3/2}}


Key Formulas or Methods Used

  1. Quotient Rule:
    dydx=vβ‹…dudxβˆ’uβ‹…dvdxv2\frac{dy}{dx} = \frac{v \cdot \frac{du}{dx} - u \cdot \frac{dv}{dx}}{v^2}
  2. Chain Rule for Square Roots:
    ddxg(x)=12g(x)β‹…dg(x)dx\frac{d}{dx}\sqrt{g(x)} = \frac{1}{2\sqrt{g(x)}} \cdot \frac{dg(x)}{dx}
  3. Simplification of algebraic fractions.

Summary of Steps

  1. Identify u=2xβˆ’1u = 2x - 1 and v=x2+1v = \sqrt{x^2 + 1}.
  2. Differentiate uu and vv:
    • dudx=2\frac{du}{dx} = 2
    • dvdx=xx2+1\frac{dv}{dx} = \frac{x}{\sqrt{x^2 + 1}}
  3. Apply the quotient rule: dydx=x2+1β‹…2βˆ’(2xβˆ’1)β‹…xx2+1(x2+1)2\frac{dy}{dx} = \frac{\sqrt{x^2 + 1} \cdot 2 - (2x - 1) \cdot \frac{x}{\sqrt{x^2 + 1}}}{(\sqrt{x^2 + 1})^2}
  4. Simplify the numerator: Numerator=x+2x2+1\text{Numerator} = \frac{x + 2}{\sqrt{x^2 + 1}}
  5. Write the final expression: dydx=x+2(x2+1)3/2\frac{dy}{dx} = \frac{x + 2}{(x^2 + 1)^{3/2}}