π¨ This site is a work in progress. Exciting updates are coming soon!
2.3 Q-12
Question Statement
Differentiate the following function with respect to x: y=a+xaβxββ
Background and Explanation
This problem involves differentiating a function that combines square roots and fractions. To solve it, we need to:
Use the chain rule for the square root function.
Apply the quotient rule to differentiate the fraction inside the square root.
Key Rules:
Chain Rule:
If f(x)=g(x)β, then: dxdβg(x)β=2g(x)β1ββ dxdg(x)β
Quotient Rule:
If f(x)=vuβ, then: dxdβ(vuβ)=v2vβ dxduββuβ dxdvββ
Solution
Step 1: Write the function in terms of powers
We can rewrite the given function as:
y=(a+xaβxβ)1/2
Step 2: Differentiate using the chain rule
Using the chain rule for square roots:
dxdyβ=2a+xaβxββ1ββ dxdβ(a+xaβxβ)
Step 3: Differentiate the fraction using the quotient rule
Let:
u=aβx, so dxduβ=β1
v=a+x, so dxdvβ=1
Using the quotient rule:
dxdβ(a+xaβxβ)=(a+x)2(a+x)β dxdβ(aβx)β(aβx)β dxdβ(a+x)β
Substitute the derivatives:
dxdβ(a+xaβxβ)=(a+x)2(a+x)(β1)β(aβx)(1)β
Simplify the numerator:
dxdβ(a+xaβxβ)=(a+x)2β(a+x)β(aβx)β dxdβ(a+xaβxβ)=(a+x)2βaβxβa+xβ dxdβ(a+xaβxβ)=(a+x)2β2aβ
Step 4: Substitute back into the chain rule
Now substitute into the chain rule formula:
dxdyβ=2a+xaβxββ1ββ (a+x)2β2aβ
Step 5: Simplify
Simplify the expression:
Rewrite a+xaβxββ as a+xβaβxββ:
dxdyβ=2β a+xβaβxββ1ββ (a+x)2β2aβ
Invert the denominator:
dxdyβ=2aβxβa+xβββ (a+x)2β2aβ