Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

2.3 Q-2

Question Statement

Differentiate the following expression with respect to xx: xβˆ’3+2x32+3x^{-3} + 2x^{\frac{3}{2}} + 3


Background and Explanation

To solve this problem, we need to apply the power rule for differentiation. The power rule states that if you have a term of the form xnx^n, its derivative is nβ‹…xnβˆ’1n \cdot x^{n-1}. This rule can be applied even when nn is negative or fractional.


Solution

Let the given function be: Y=xβˆ’3+2x32+3Y = x^{-3} + 2x^{\frac{3}{2}} + 3

Now, differentiate each term with respect to xx:

  1. Differentiate each term:

    • For the first term, xβˆ’3x^{-3}:
      ddx[xβˆ’3]=βˆ’3xβˆ’4\frac{d}{dx} \left[ x^{-3} \right] = -3x^{-4}
    • For the second term, 2x322x^{\frac{3}{2}}:
      ddx[2x32]=2Γ—32x12=3x12\frac{d}{dx} \left[ 2x^{\frac{3}{2}} \right] = 2 \times \frac{3}{2} x^{\frac{1}{2}} = 3x^{\frac{1}{2}}
    • For the third term, the constant 3:
      ddx[3]=0\frac{d}{dx} \left[ 3 \right] = 0
  2. Combine the derivatives: dydx=βˆ’3xβˆ’4+3x12\frac{dy}{dx} = -3x^{-4} + 3x^{\frac{1}{2}}

  3. Rewrite in fractional form (optional): dydx=βˆ’3x4+3x12\frac{dy}{dx} = -\frac{3}{x^4} + \frac{3}{x^{\frac{1}{2}}}

  4. Final Simplified Form: dydx=βˆ’3[1x4+1x52]\frac{dy}{dx} = -3 \left[ \frac{1}{x^4} + \frac{1}{x^{\frac{5}{2}}} \right]

Final Answer:
dydx=βˆ’3[1x4+1x52]\frac{dy}{dx} = -3 \left[ \frac{1}{x^4} + \frac{1}{x^{\frac{5}{2}}} \right]


Key Formulas or Methods Used

  • Power Rule of Differentiation:
    For any term xnx^n, the derivative is:
    ddx[xn]=nβ‹…xnβˆ’1\frac{d}{dx} \left[ x^n \right] = n \cdot x^{n-1}

Summary of Steps

  1. Identify the function: Y=xβˆ’3+2x32+3Y = x^{-3} + 2x^{\frac{3}{2}} + 3

  2. Apply the power rule to differentiate each term:

    • ddx[xβˆ’3]=βˆ’3xβˆ’4\frac{d}{dx} \left[ x^{-3} \right] = -3x^{-4}
    • ddx[2x32]=3x12\frac{d}{dx} \left[ 2x^{\frac{3}{2}} \right] = 3x^{\frac{1}{2}}
    • ddx[3]=0\frac{d}{dx} \left[ 3 \right] = 0
  3. Combine the derivatives to get:
    dydx=βˆ’3xβˆ’4+3x12\frac{dy}{dx} = -3x^{-4} + 3x^{\frac{1}{2}}

  4. Rewrite in fractional form (optional):
    dydx=βˆ’3x4+3x12\frac{dy}{dx} = -\frac{3}{x^4} + \frac{3}{x^{\frac{1}{2}}}

  5. Final simplified form:
    dydx=βˆ’3[1x4+1x52]\frac{dy}{dx} = -3 \left[ \frac{1}{x^4} + \frac{1}{x^{\frac{5}{2}}} \right]