Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

2.3 Q-4

Question Statement

Differentiate the following expression with respect to xx: 2xβˆ’32x+1\frac{2x - 3}{2x + 1}


Background and Explanation

To solve this problem, we will use the quotient rule for differentiation. The quotient rule is applied when differentiating a function that is the ratio of two functions. The rule states: ddx(u(x)v(x))=v(x)β‹…uβ€²(x)βˆ’u(x)β‹…vβ€²(x)(v(x))2\frac{d}{dx} \left( \frac{u(x)}{v(x)} \right) = \frac{v(x) \cdot u'(x) - u(x) \cdot v'(x)}{(v(x))^2}

Here, we have:

  • u(x)=2xβˆ’3u(x) = 2x - 3
  • v(x)=2x+1v(x) = 2x + 1

We will differentiate both the numerator and the denominator and then apply the quotient rule.


Solution

Let the function be: Y=2xβˆ’32x+1Y = \frac{2x - 3}{2x + 1}

Now, differentiate both sides with respect to xx using the quotient rule:

  1. Differentiate the numerator (u(x)=2xβˆ’3u(x) = 2x - 3): uβ€²(x)=2u'(x) = 2

  2. Differentiate the denominator (v(x)=2x+1v(x) = 2x + 1): vβ€²(x)=2v'(x) = 2

  3. Apply the quotient rule: Using the quotient rule formula: dydx=v(x)β‹…uβ€²(x)βˆ’u(x)β‹…vβ€²(x)(v(x))2\frac{dy}{dx} = \frac{v(x) \cdot u'(x) - u(x) \cdot v'(x)}{(v(x))^2}

    Substitute the values for u(x)u(x), v(x)v(x), uβ€²(x)u'(x), and vβ€²(x)v'(x): dydx=(2x+1)β‹…2βˆ’(2xβˆ’3)β‹…2(2x+1)2\frac{dy}{dx} = \frac{(2x + 1) \cdot 2 - (2x - 3) \cdot 2}{(2x + 1)^2}

  4. Simplify the expression: First, distribute the constants in the numerator: dydx=2(2x+1)βˆ’2(2xβˆ’3)(2x+1)2\frac{dy}{dx} = \frac{2(2x + 1) - 2(2x - 3)}{(2x + 1)^2}

    Now simplify the numerator: dydx=4x+2βˆ’4x+6(2x+1)2\frac{dy}{dx} = \frac{4x + 2 - 4x + 6}{(2x + 1)^2}

    Combine like terms: dydx=8(2x+1)2\frac{dy}{dx} = \frac{8}{(2x + 1)^2}

Thus, the derivative of the given function is: dydx=8(2x+1)2\frac{dy}{dx} = \frac{8}{(2x + 1)^2}

Final Answer: dydx=8(2x+1)2\frac{dy}{dx} = \frac{8}{(2x + 1)^2}


Key Formulas or Methods Used

  • Quotient Rule:
    If you have a function in the form u(x)v(x)\frac{u(x)}{v(x)}, the derivative is: ddx(u(x)v(x))=v(x)β‹…uβ€²(x)βˆ’u(x)β‹…vβ€²(x)(v(x))2\frac{d}{dx} \left( \frac{u(x)}{v(x)} \right) = \frac{v(x) \cdot u'(x) - u(x) \cdot v'(x)}{(v(x))^2}

Summary of Steps

  1. Identify the function:
    Y=2xβˆ’32x+1Y = \frac{2x - 3}{2x + 1}

  2. Differentiate the numerator and denominator:

    • uβ€²(x)=2u'(x) = 2
    • vβ€²(x)=2v'(x) = 2
  3. Apply the quotient rule: dydx=(2x+1)β‹…2βˆ’(2xβˆ’3)β‹…2(2x+1)2\frac{dy}{dx} = \frac{(2x + 1) \cdot 2 - (2x - 3) \cdot 2}{(2x + 1)^2}

  4. Simplify the expression: dydx=8(2x+1)2\frac{dy}{dx} = \frac{8}{(2x + 1)^2}

  5. Final Answer: dydx=8(2x+1)2\frac{dy}{dx} = \frac{8}{(2x + 1)^2}