Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

2.3 Q-5

Question Statement

Differentiate the following product of terms with respect to xx:
Y=(xβˆ’5)(3βˆ’x)Y = (x-5)(3-x)


Background and Explanation

This question involves finding the derivative of a product of two terms. To solve this, we use the product rule of differentiation, which states:
ddx[uβ‹…v]=udvdx+vdudx\frac{d}{dx} \left[ u \cdot v \right] = u \frac{dv}{dx} + v \frac{du}{dx}
Here, uu and vv are functions of xx. This rule ensures that both the variation of uu and vv are accounted for when differentiating their product.


Solution

Let the given function be: Y=(xβˆ’5)(3βˆ’x)Y = (x - 5)(3 - x)

Step 1: Identify uu and vv

  • Let u=(xβˆ’5)u = (x - 5)
  • Let v=(3βˆ’x)v = (3 - x)

Step 2: Differentiate uu and vv

  • The derivative of u=(xβˆ’5)u = (x - 5) is:
    dudx=1\frac{du}{dx} = 1
  • The derivative of v=(3βˆ’x)v = (3 - x) is:
    dvdx=βˆ’1\frac{dv}{dx} = -1

Step 3: Apply the product rule

Using the product rule:
dydx=udvdx+vdudx\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}

Substitute the values of uu, vv, dudx\frac{du}{dx}, and dvdx\frac{dv}{dx}: dydx=(xβˆ’5)(βˆ’1)+(3βˆ’x)(1)\frac{dy}{dx} = (x - 5)(-1) + (3 - x)(1)

Step 4: Simplify the expression

Expand and combine terms:

  • (xβˆ’5)(βˆ’1)=βˆ’x+5(x - 5)(-1) = -x + 5
  • (3βˆ’x)(1)=3βˆ’x(3 - x)(1) = 3 - x

Adding these: dydx=βˆ’x+5+3βˆ’x\frac{dy}{dx} = -x + 5 + 3 - x dydx=βˆ’2x+8\frac{dy}{dx} = -2x + 8

Final Answer:
dydx=βˆ’2x+8\frac{dy}{dx} = -2x + 8


Key Formulas or Methods Used

  • Product Rule:
    ddx[uβ‹…v]=udvdx+vdudx\frac{d}{dx} \left[ u \cdot v \right] = u \frac{dv}{dx} + v \frac{du}{dx}

Summary of Steps

  1. Identify the terms: u=(xβˆ’5)u = (x-5) and v=(3βˆ’x)v = (3-x).
  2. Differentiate each term:
    • dudx=1\frac{du}{dx} = 1
    • dvdx=βˆ’1\frac{dv}{dx} = -1
  3. Apply the product rule:
    dydx=udvdx+vdudx\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}
  4. Simplify the expression:
    dydx=βˆ’2x+8\frac{dy}{dx} = -2x + 8