Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

2.3 Q-6

Question Statement

Differentiate the following expression with respect to xx:
Y=(xβˆ’1x)2Y = \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2


Background and Explanation

This problem involves the differentiation of a squared expression. To solve it, we will:

  1. Expand the square using the formula:
    (aβˆ’b)2=a2+b2βˆ’2ab(a - b)^2 = a^2 + b^2 - 2ab
  2. Simplify the resulting expression.
  3. Differentiate the simplified expression term by term using the basic differentiation rules:
    • The derivative of xx is 11.
    • The derivative of 1x\frac{1}{x} is βˆ’1x2-\frac{1}{x^2}.

Solution

Step 1: Expand the square

Given: Y=(xβˆ’1x)2Y = \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2

Expand using the formula (aβˆ’b)2=a2+b2βˆ’2ab(a - b)^2 = a^2 + b^2 - 2ab:
Y=(x)2+(1x)2βˆ’2xβ‹…1xY = (\sqrt{x})^2 + \left( \frac{1}{\sqrt{x}} \right)^2 - 2 \sqrt{x} \cdot \frac{1}{\sqrt{x}}

Simplify each term:

  • (x)2=x(\sqrt{x})^2 = x
  • (1x)2=1x\left( \frac{1}{\sqrt{x}} \right)^2 = \frac{1}{x}
  • 2xβ‹…1x=22 \sqrt{x} \cdot \frac{1}{\sqrt{x}} = 2

Substitute back: Y=x+1xβˆ’2Y = x + \frac{1}{x} - 2

Step 2: Differentiate with respect to xx

Now differentiate YY term by term:

  1. The derivative of xx is 11.
  2. The derivative of 1x\frac{1}{x} is βˆ’1x2-\frac{1}{x^2}.
  3. The derivative of the constant βˆ’2-2 is 00.

So: dYdx=ddx(x)+ddx(1x)βˆ’ddx(2)\frac{dY}{dx} = \frac{d}{dx}(x) + \frac{d}{dx}\left( \frac{1}{x} \right) - \frac{d}{dx}(2) dYdx=1βˆ’1x2βˆ’0\frac{dY}{dx} = 1 - \frac{1}{x^2} - 0

Step 3: Simplify the result

Combine terms: dYdx=x2βˆ’1x2\frac{dY}{dx} = \frac{x^2 - 1}{x^2}

Final Answer:
dYdx=x2βˆ’1x2\frac{dY}{dx} = \frac{x^2 - 1}{x^2}


Key Formulas or Methods Used

  1. Expansion of Squares:
    (aβˆ’b)2=a2+b2βˆ’2ab(a - b)^2 = a^2 + b^2 - 2ab
  2. Basic Derivatives:
    • ddx(x)=1\frac{d}{dx}(x) = 1
    • ddx(1x)=βˆ’1x2\frac{d}{dx}\left(\frac{1}{x}\right) = -\frac{1}{x^2}
    • The derivative of a constant is 00.

Summary of Steps

  1. Expand the square:
    (xβˆ’1x)2β†’x+1xβˆ’2\left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 \to x + \frac{1}{x} - 2
  2. Differentiate each term:
    • ddx(x)=1\frac{d}{dx}(x) = 1
    • ddx(1x)=βˆ’1x2\frac{d}{dx}\left(\frac{1}{x}\right) = -\frac{1}{x^2}
    • ddx(βˆ’2)=0\frac{d}{dx}(-2) = 0
  3. Combine the results:
    dYdx=x2βˆ’1x2\frac{dY}{dx} = \frac{x^2 - 1}{x^2}