Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

2.3 Q-7

Question Statement

Differentiate the following expression with respect to xx:
y=(1+x)(xβˆ’x52)xy = \frac{(1 + \sqrt{x})(x - x^{\frac{5}{2}})}{\sqrt{x}}


Background and Explanation

This problem involves simplifying a rational expression before differentiating. The main steps include:

  1. Simplifying the given fraction using basic algebraic identities.
  2. Using differentiation rules for powers of xx:
    • The derivative of xnx^n is nβ‹…xnβˆ’1n \cdot x^{n-1}.

The problem requires careful algebraic manipulation to make differentiation straightforward.


Solution

Step 1: Simplify the expression

The given expression is:
y=(1+x)(xβˆ’x52)xy = \frac{(1 + \sqrt{x})(x - x^{\frac{5}{2}})}{\sqrt{x}}

Expand the numerator term by term: y=(1+x)β‹…x(1βˆ’x)xy = \frac{(1 + \sqrt{x}) \cdot x(1 - \sqrt{x})}{\sqrt{x}}

Using the difference of squares:
(1+x)(1βˆ’x)=1βˆ’x(1 + \sqrt{x})(1 - \sqrt{x}) = 1 - x

So: y=x(1βˆ’x)xy = \frac{x(1 - x)}{\sqrt{x}}

Simplify further by splitting the terms: y=x(1βˆ’x)y = \sqrt{x}(1 - x)

Expand: y=xβˆ’xxy = \sqrt{x} - x \sqrt{x}

Convert to powers of xx: y=x12βˆ’x32y = x^{\frac{1}{2}} - x^{\frac{3}{2}}

Step 2: Differentiate the simplified expression

The expression is now: y=x12βˆ’x32y = x^{\frac{1}{2}} - x^{\frac{3}{2}}

Differentiate term by term using the power rule:

  • The derivative of x12x^{\frac{1}{2}} is:
    12xβˆ’12=12x\frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}}
  • The derivative of x32x^{\frac{3}{2}} is:
    32x12\frac{3}{2}x^{\frac{1}{2}}

So: dydx=12xβˆ’32x12\frac{dy}{dx} = \frac{1}{2\sqrt{x}} - \frac{3}{2}x^{\frac{1}{2}}

Step 3: Simplify the result

Combine the terms:
dydx=12β‹…1βˆ’3xx\frac{dy}{dx} = \frac{1}{2} \cdot \frac{1 - 3x}{\sqrt{x}}

Final Answer:
dydx=1βˆ’3x2x\frac{dy}{dx} = \frac{1 - 3x}{2\sqrt{x}}


Key Formulas or Methods Used

  1. Simplification of Rational Expressions: (1+x)(1βˆ’x)xβ†’1βˆ’x\frac{(1 + \sqrt{x})(1 - \sqrt{x})}{\sqrt{x}} \to 1 - x
  2. Power Rule for Differentiation: ddx(xn)=nβ‹…xnβˆ’1\frac{d}{dx}(x^n) = n \cdot x^{n-1}

Summary of Steps

  1. Simplify the given expression:
    y=xβˆ’xx=x12βˆ’x32y = \sqrt{x} - x \sqrt{x} = x^{\frac{1}{2}} - x^{\frac{3}{2}}
  2. Differentiate each term using the power rule:
    • ddx(x12)=12x\frac{d}{dx}\left(x^{\frac{1}{2}}\right) = \frac{1}{2\sqrt{x}}
    • ddx(x32)=32x12\frac{d}{dx}\left(x^{\frac{3}{2}}\right) = \frac{3}{2}x^{\frac{1}{2}}
  3. Combine and simplify the result:
    dydx=1βˆ’3x2x\frac{dy}{dx} = \frac{1 - 3x}{2\sqrt{x}}