Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

2.3 Q-8

Question Statement

Differentiate the following expression with respect to xx:
y=(x2+1)2x2βˆ’1y = \frac{\left(x^2 + 1\right)^2}{x^2 - 1}


Background and Explanation

This problem requires the application of the quotient rule for differentiation because the function is expressed as a ratio of two terms. Additionally, the chain rule is used to differentiate composite functions like (x2+1)2\left(x^2 + 1\right)^2 and x2βˆ’1x^2 - 1.

Key Differentiation Rules:

  1. Quotient Rule:
    If y=uvy = \frac{u}{v}, then:
    dydx=vβ‹…dudxβˆ’uβ‹…dvdxv2\frac{dy}{dx} = \frac{v \cdot \frac{du}{dx} - u \cdot \frac{dv}{dx}}{v^2}
  2. Chain Rule:
    If y=f(g(x))y = f(g(x)), then:
    dydx=fβ€²(g(x))β‹…gβ€²(x)\frac{dy}{dx} = f'(g(x)) \cdot g'(x)

Solution

Step 1: Identify the numerator and denominator

The given expression is:
y=(x2+1)2x2βˆ’1y = \frac{\left(x^2 + 1\right)^2}{x^2 - 1}
Here:

  • Numerator: u=(x2+1)2u = \left(x^2 + 1\right)^2
  • Denominator: v=x2βˆ’1v = x^2 - 1

Step 2: Apply the quotient rule

The quotient rule states:
dydx=vβ‹…dudxβˆ’uβ‹…dvdxv2\frac{dy}{dx} = \frac{v \cdot \frac{du}{dx} - u \cdot \frac{dv}{dx}}{v^2}

a) Differentiate u=(x2+1)2u = \left(x^2 + 1\right)^2 using the chain rule:

  • Outer function: (β‹…)2β€…β€ŠβŸΉβ€…β€Š2β‹…(β‹…)(\cdot)^2 \implies 2 \cdot (\cdot)
  • Inner function: x2+1β€…β€ŠβŸΉβ€…β€Šddx(x2+1)=2xx^2 + 1 \implies \frac{d}{dx}(x^2 + 1) = 2x

Thus: dudx=2(x2+1)(2x)=4x(x2+1)\frac{du}{dx} = 2\left(x^2 + 1\right)(2x) = 4x\left(x^2 + 1\right)

b) Differentiate v=x2βˆ’1v = x^2 - 1:

dvdx=2x\frac{dv}{dx} = 2x

Step 3: Substitute into the quotient rule

Substituting the derivatives into the quotient rule formula:
dydx=(x2βˆ’1)β‹…4x(x2+1)βˆ’(x2+1)2β‹…2x(x2βˆ’1)2\frac{dy}{dx} = \frac{\left(x^2 - 1\right) \cdot 4x\left(x^2 + 1\right) - \left(x^2 + 1\right)^2 \cdot 2x}{\left(x^2 - 1\right)^2}

Step 4: Simplify the numerator

Factor out 2x2x: dydx=2x[2(x2βˆ’1)(x2+1)βˆ’(x2+1)2](x2βˆ’1)2\frac{dy}{dx} = \frac{2x \left[2\left(x^2 - 1\right)\left(x^2 + 1\right) - \left(x^2 + 1\right)^2\right]}{\left(x^2 - 1\right)^2}

Expand each term:

  1. 2(x2βˆ’1)(x2+1)=2(x4βˆ’1)2\left(x^2 - 1\right)\left(x^2 + 1\right) = 2(x^4 - 1)
  2. (x2+1)2=x4+2x2+1\left(x^2 + 1\right)^2 = x^4 + 2x^2 + 1

So: Numerator=4x(x4βˆ’1)βˆ’2x(x4+2x2+1)\text{Numerator} = 4x(x^4 - 1) - 2x(x^4 + 2x^2 + 1)

Combine terms: Numerator=2x[(x4βˆ’1)βˆ’(x4+2x2+1)]\text{Numerator} = 2x\left[(x^4 - 1) - (x^4 + 2x^2 + 1)\right]
=2x(x2+1)(x2+3)= 2x\left(x^2 + 1\right)\left(x^2 + 3\right)

Final Result:

dydx=2x(x2+1)(x2+3)(x2βˆ’1)2\frac{dy}{dx} = \frac{2x\left(x^2 + 1\right)\left(x^2 + 3\right)}{\left(x^2 - 1\right)^2}


Key Formulas or Methods Used

  1. Quotient Rule:
    dydx=vβ‹…dudxβˆ’uβ‹…dvdxv2\frac{dy}{dx} = \frac{v \cdot \frac{du}{dx} - u \cdot \frac{dv}{dx}}{v^2}

  2. Chain Rule:
    ddx[(f(x))n]=nβ‹…f(x)nβˆ’1β‹…fβ€²(x)\frac{d}{dx}\left[\left(f(x)\right)^n\right] = n \cdot f(x)^{n-1} \cdot f'(x)

  3. Simplifications using algebraic expansion and factoring.


Summary of Steps

  1. Identify uu (numerator) and vv (denominator).
  2. Differentiate u=(x2+1)2u = \left(x^2 + 1\right)^2 using the chain rule: dudx=4x(x2+1)\frac{du}{dx} = 4x\left(x^2 + 1\right)
  3. Differentiate v=x2βˆ’1v = x^2 - 1:
    dvdx=2x\frac{dv}{dx} = 2x
  4. Apply the quotient rule and simplify the numerator.
  5. Factor the result for clarity: dydx=2x(x2+1)(x2+3)(x2βˆ’1)2\frac{dy}{dx} = \frac{2x\left(x^2 + 1\right)\left(x^2 + 3\right)}{\left(x^2 - 1\right)^2}