Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

2.3 Q-9

Question Statement

Differentiate the following expression with respect to xx:
y=x2+1x2βˆ’3y = \frac{x^2 + 1}{x^2 - 3}


Background and Explanation

This problem involves differentiation of a rational function, which requires the quotient rule. The quotient rule is used when a function is expressed as a ratio of two other functions. Additionally, we need to know how to differentiate basic polynomial terms like x2x^2.

Key Differentiation Rules:

  1. Quotient Rule:
    If y=uvy = \frac{u}{v}, then:
    dydx=vβ‹…dudxβˆ’uβ‹…dvdxv2\frac{dy}{dx} = \frac{v \cdot \frac{du}{dx} - u \cdot \frac{dv}{dx}}{v^2}
  2. Differentiation of xnx^n:
    ddx(xn)=nβ‹…xnβˆ’1\frac{d}{dx}(x^n) = n \cdot x^{n-1}

Solution

Step 1: Identify the numerator and denominator

The given function is:
y=x2+1x2βˆ’3y = \frac{x^2 + 1}{x^2 - 3}
Here:

  • Numerator: u=x2+1u = x^2 + 1
  • Denominator: v=x2βˆ’3v = x^2 - 3

Step 2: Apply the quotient rule

Using the quotient rule:
dydx=vβ‹…dudxβˆ’uβ‹…dvdxv2\frac{dy}{dx} = \frac{v \cdot \frac{du}{dx} - u \cdot \frac{dv}{dx}}{v^2}

a) Differentiate u=x2+1u = x^2 + 1:

dudx=2x\frac{du}{dx} = 2x

b) Differentiate v=x2βˆ’3v = x^2 - 3:

dvdx=2x\frac{dv}{dx} = 2x

Step 3: Substitute into the quotient rule

Substitute uu, vv, and their derivatives into the formula: dydx=(x2βˆ’3)(2x)βˆ’(x2+1)(2x)(x2βˆ’3)2\frac{dy}{dx} = \frac{(x^2 - 3)(2x) - (x^2 + 1)(2x)}{(x^2 - 3)^2}

Step 4: Simplify the numerator

Expand both terms in the numerator:

  1. (x2βˆ’3)(2x)=2x(x2βˆ’3)=2x3βˆ’6x(x^2 - 3)(2x) = 2x(x^2 - 3) = 2x^3 - 6x
  2. (x2+1)(2x)=2x(x2+1)=2x3+2x(x^2 + 1)(2x) = 2x(x^2 + 1) = 2x^3 + 2x

Subtract these terms: Numerator=(2x3βˆ’6x)βˆ’(2x3+2x)\text{Numerator} = \left(2x^3 - 6x\right) - \left(2x^3 + 2x\right)
Numerator=2x3βˆ’6xβˆ’2x3βˆ’2x\text{Numerator} = 2x^3 - 6x - 2x^3 - 2x
Numerator=βˆ’8x\text{Numerator} = -8x

Step 5: Write the final expression

The derivative is: dydx=βˆ’8x(x2βˆ’3)2\frac{dy}{dx} = \frac{-8x}{(x^2 - 3)^2}


Key Formulas or Methods Used

  1. Quotient Rule:
    dydx=vβ‹…dudxβˆ’uβ‹…dvdxv2\frac{dy}{dx} = \frac{v \cdot \frac{du}{dx} - u \cdot \frac{dv}{dx}}{v^2}

  2. Differentiation of polynomials:
    ddx(xn)=nβ‹…xnβˆ’1\frac{d}{dx}(x^n) = n \cdot x^{n-1}

  3. Simplification of algebraic expressions.


Summary of Steps

  1. Identify uu (numerator) and vv (denominator).
  2. Differentiate u=x2+1u = x^2 + 1 and v=x2βˆ’3v = x^2 - 3:
    • dudx=2x\frac{du}{dx} = 2x
    • dvdx=2x\frac{dv}{dx} = 2x
  3. Apply the quotient rule: dydx=(x2βˆ’3)(2x)βˆ’(x2+1)(2x)(x2βˆ’3)2\frac{dy}{dx} = \frac{(x^2 - 3)(2x) - (x^2 + 1)(2x)}{(x^2 - 3)^2}
  4. Simplify the numerator to: βˆ’8x-8x
  5. Write the final expression: dydx=βˆ’8x(x2βˆ’3)2\frac{dy}{dx} = \frac{-8x}{(x^2 - 3)^2}