Question Statement
Find d y d x \frac{dy}{dx} d x d y β by making suitable substitutions for the following cases:
y = 1 β x 1 + x y = \sqrt{\frac{1-x}{1+x}} y = 1 + x 1 β x β β
y = x + x y = \sqrt{x + \sqrt{x}} y = x + x β β
y = x a + x a β x y = x \sqrt{\frac{a+x}{a-x}} y = x a β x a + x β β
y = ( 3 x 2 β 2 x + 7 ) 6 y = (3x^2 - 2x + 7)^6 y = ( 3 x 2 β 2 x + 7 ) 6
y = a 2 + x 2 a 2 β x 2 y = \sqrt{\frac{a^2 + x^2}{a^2 - x^2}} y = a 2 β x 2 a 2 + x 2 β β
Background and Explanation
To solve these problems, the chain rule is used extensively. The chain rule states:
d y d x = d y d u β
d u d x , \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}, d x d y β = d u d y β β
d x d u β ,
where intermediate substitution is made for u u u , simplifying differentiation. Knowledge of basic differentiation rules, square root derivatives, and rational function derivatives is required.
Solution
Case 1: y = 1 β x 1 + x y = \sqrt{\frac{1-x}{1+x}} y = 1 + x 1 β x β β
Let u = 1 β x 1 + x u = \frac{1-x}{1+x} u = 1 + x 1 β x β , so y = u 1 / 2 y = u^{1/2} y = u 1/2 .
Differentiate u u u with respect to x x x :
d u d x = β 1 ( 1 + x ) β ( 1 β x ) ( 1 ) ( 1 + x ) 2 = β 2 ( 1 + x ) 2 . \frac{du}{dx} = \frac{-1(1+x) - (1-x)(1)}{(1+x)^2} = \frac{-2}{(1+x)^2}. d x d u β = ( 1 + x ) 2 β 1 ( 1 + x ) β ( 1 β x ) ( 1 ) β = ( 1 + x ) 2 β 2 β .
Differentiate y y y with respect to u u u :
d y d u = 1 2 u β 1 / 2 = 1 2 u . \frac{dy}{du} = \frac{1}{2} u^{-1/2} = \frac{1}{2\sqrt{u}}. d u d y β = 2 1 β u β 1/2 = 2 u β 1 β .
By the chain rule:
d y d x = d y d u β
d u d x = 1 2 1 β x 1 + x β
β 2 ( 1 + x ) 2 . \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \frac{1}{2\sqrt{\frac{1-x}{1+x}}} \cdot \frac{-2}{(1+x)^2}. d x d y β = d u d y β β
d x d u β = 2 1 + x 1 β x β β 1 β β
( 1 + x ) 2 β 2 β .
Simplify using u = 1 β x 1 + x \sqrt{u} = \sqrt{\frac{1-x}{1+x}} u β = 1 + x 1 β x β β :
d y d x = β 1 1 β x ( 1 + x ) 3 / 2 . \frac{dy}{dx} = \frac{-1}{\sqrt{1-x}(1+x)^{3/2}}. d x d y β = 1 β x β ( 1 + x ) 3/2 β 1 β .
Case 2: y = x + x y = \sqrt{x + \sqrt{x}} y = x + x β β
Let u = x + x u = x + \sqrt{x} u = x + x β , so y = u = u 1 / 2 y = \sqrt{u} = u^{1/2} y = u β = u 1/2 .
Differentiate u u u with respect to x x x :
d u d x = 1 + 1 2 x . \frac{du}{dx} = 1 + \frac{1}{2\sqrt{x}}. d x d u β = 1 + 2 x β 1 β .
Differentiate y y y with respect to u u u :
d y d u = 1 2 u . \frac{dy}{du} = \frac{1}{2\sqrt{u}}. d u d y β = 2 u β 1 β .
By the chain rule:
d y d x = d y d u β
d u d x = 1 2 x + x β
( 1 + 1 2 x ) . \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \frac{1}{2\sqrt{x+\sqrt{x}}} \cdot \left(1 + \frac{1}{2\sqrt{x}}\right). d x d y β = d u d y β β
d x d u β = 2 x + x β β 1 β β
( 1 + 2 x β 1 β ) .
Simplify:
d y d x = 1 + 1 2 x 2 x + x = 2 x + 1 4 x x + x . \frac{dy}{dx} = \frac{1 + \frac{1}{2\sqrt{x}}}{2\sqrt{x+\sqrt{x}}} = \frac{2\sqrt{x}+1}{4\sqrt{x}\sqrt{x+\sqrt{x}}}. d x d y β = 2 x + x β β 1 + 2 x β 1 β β = 4 x β x + x β β 2 x β + 1 β .
Case 3: y = x a + x a β x y = x \sqrt{\frac{a+x}{a-x}} y = x a β x a + x β β
Let u = a + x a β x u = \frac{a+x}{a-x} u = a β x a + x β , so y = x u y = x\sqrt{u} y = x u β .
Differentiate u u u with respect to x x x :
d u d x = ( a β x ) ( 1 ) β ( a + x ) ( β 1 ) ( a β x ) 2 = 2 a ( a β x ) 2 . \frac{du}{dx} = \frac{(a-x)(1) - (a+x)(-1)}{(a-x)^2} = \frac{2a}{(a-x)^2}. d x d u β = ( a β x ) 2 ( a β x ) ( 1 ) β ( a + x ) ( β 1 ) β = ( a β x ) 2 2 a β .
Differentiate y y y with respect to x x x using the product rule:
d y d x = u β
d x d x + x β
1 2 u β
d u d x . \frac{dy}{dx} = \sqrt{u} \cdot \frac{dx}{dx} + x \cdot \frac{1}{2\sqrt{u}} \cdot \frac{du}{dx}. d x d y β = u β β
d x d x β + x β
2 u β 1 β β
d x d u β .
Substitute values:
d y d x = a + x a β x + x β
1 2 a + x a β x β
2 a ( a β x ) 2 . \frac{dy}{dx} = \sqrt{\frac{a+x}{a-x}} + x \cdot \frac{1}{2\sqrt{\frac{a+x}{a-x}}} \cdot \frac{2a}{(a-x)^2}. d x d y β = a β x a + x β β + x β
2 a β x a + x β β 1 β β
( a β x ) 2 2 a β .
Case 4: y = ( 3 x 2 β 2 x + 7 ) 6 y = (3x^2 - 2x + 7)^6 y = ( 3 x 2 β 2 x + 7 ) 6
Let u = 3 x 2 β 2 x + 7 u = 3x^2 - 2x + 7 u = 3 x 2 β 2 x + 7 , so y = u 6 y = u^6 y = u 6 .
Differentiate u u u with respect to x x x :
d u d x = 6 x β 2. \frac{du}{dx} = 6x - 2. d x d u β = 6 x β 2.
Differentiate y y y with respect to u u u :
d y d u = 6 u 5 . \frac{dy}{du} = 6u^5. d u d y β = 6 u 5 .
By the chain rule:
d y d x = d y d u β
d u d x = 6 ( 3 x 2 β 2 x + 7 ) 5 β
( 6 x β 2 ) . \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = 6(3x^2 - 2x + 7)^5 \cdot (6x - 2). d x d y β = d u d y β β
d x d u β = 6 ( 3 x 2 β 2 x + 7 ) 5 β
( 6 x β 2 ) .
Case 5: y = a 2 + x 2 a 2 β x 2 y = \sqrt{\frac{a^2+x^2}{a^2-x^2}} y = a 2 β x 2 a 2 + x 2 β β
Let u = a 2 + x 2 a 2 β x 2 u = \frac{a^2+x^2}{a^2-x^2} u = a 2 β x 2 a 2 + x 2 β , so y = u 1 / 2 y = u^{1/2} y = u 1/2 .
Differentiate u u u with respect to x x x :
d u d x = ( a 2 β x 2 ) ( 2 x ) β ( a 2 + x 2 ) ( β 2 x ) ( a 2 β x 2 ) 2 = 4 a 2 x ( a 2 β x 2 ) 2 . \frac{du}{dx} = \frac{(a^2-x^2)(2x) - (a^2+x^2)(-2x)}{(a^2-x^2)^2} = \frac{4a^2x}{(a^2-x^2)^2}. d x d u β = ( a 2 β x 2 ) 2 ( a 2 β x 2 ) ( 2 x ) β ( a 2 + x 2 ) ( β 2 x ) β = ( a 2 β x 2 ) 2 4 a 2 x β .
Differentiate y y y with respect to u u u :
d y d u = 1 2 u β 1 / 2 . \frac{dy}{du} = \frac{1}{2} u^{-1/2}. d u d y β = 2 1 β u β 1/2 .
By the chain rule:
d y d x = 1 2 a 2 β x 2 a 2 + x 2 β
4 a 2 x ( a 2 β x 2 ) 2 . \frac{dy}{dx} = \frac{1}{2} \sqrt{\frac{a^2-x^2}{a^2+x^2}} \cdot \frac{4a^2x}{(a^2-x^2)^2}. d x d y β = 2 1 β a 2 + x 2 a 2 β x 2 β β β
( a 2 β x 2 ) 2 4 a 2 x β .
Simplify:
d y d x = 2 a 2 x a 2 + x 2 ( a 2 β x 2 ) 3 / 2 . \frac{dy}{dx} = \frac{2a^2x}{\sqrt{a^2+x^2}(a^2-x^2)^{3/2}}. d x d y β = a 2 + x 2 β ( a 2 β x 2 ) 3/2 2 a 2 x β .
Chain Rule : d y d x = d y d u β
d u d x \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} d x d y β = d u d y β β
d x d u β .
Product Rule : d ( u v ) d x = u d v d x + v d u d x \frac{d(uv)}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} d x d ( uv ) β = u d x d v β + v d x d u β .
Square Root Derivatives : d d x ( u ) = 1 2 u β
d u d x \frac{d}{dx}(\sqrt{u}) = \frac{1}{2\sqrt{u}} \cdot \frac{du}{dx} d x d β ( u β ) = 2 u β 1 β β
d x d u β .
Summary of Steps
Identify a substitution to simplify the function.
Differentiate the substitution u u u with respect to x x x .
Apply the chain rule and substitute back the original expressions.
Simplify to the final derivative.