Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

2.4 Q-1

Question Statement

Find dydx\frac{dy}{dx} by making suitable substitutions for the following cases:

  1. y=1βˆ’x1+xy = \sqrt{\frac{1-x}{1+x}}
  2. y=x+xy = \sqrt{x + \sqrt{x}}
  3. y=xa+xaβˆ’xy = x \sqrt{\frac{a+x}{a-x}}
  4. y=(3x2βˆ’2x+7)6y = (3x^2 - 2x + 7)^6
  5. y=a2+x2a2βˆ’x2y = \sqrt{\frac{a^2 + x^2}{a^2 - x^2}}

Background and Explanation

To solve these problems, the chain rule is used extensively. The chain rule states:

dydx=dyduβ‹…dudx,\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx},

where intermediate substitution is made for uu, simplifying differentiation. Knowledge of basic differentiation rules, square root derivatives, and rational function derivatives is required.


Solution

Case 1: y=1βˆ’x1+xy = \sqrt{\frac{1-x}{1+x}}

  1. Let u=1βˆ’x1+xu = \frac{1-x}{1+x}, so y=u1/2y = u^{1/2}.
  2. Differentiate uu with respect to xx:
dudx=βˆ’1(1+x)βˆ’(1βˆ’x)(1)(1+x)2=βˆ’2(1+x)2. \frac{du}{dx} = \frac{-1(1+x) - (1-x)(1)}{(1+x)^2} = \frac{-2}{(1+x)^2}.
  1. Differentiate yy with respect to uu:
dydu=12uβˆ’1/2=12u. \frac{dy}{du} = \frac{1}{2} u^{-1/2} = \frac{1}{2\sqrt{u}}.
  1. By the chain rule:
dydx=dyduβ‹…dudx=121βˆ’x1+xβ‹…βˆ’2(1+x)2. \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \frac{1}{2\sqrt{\frac{1-x}{1+x}}} \cdot \frac{-2}{(1+x)^2}.
  1. Simplify using u=1βˆ’x1+x\sqrt{u} = \sqrt{\frac{1-x}{1+x}}:
dydx=βˆ’11βˆ’x(1+x)3/2. \frac{dy}{dx} = \frac{-1}{\sqrt{1-x}(1+x)^{3/2}}.

Case 2: y=x+xy = \sqrt{x + \sqrt{x}}

  1. Let u=x+xu = x + \sqrt{x}, so y=u=u1/2y = \sqrt{u} = u^{1/2}.
  2. Differentiate uu with respect to xx:
dudx=1+12x. \frac{du}{dx} = 1 + \frac{1}{2\sqrt{x}}.
  1. Differentiate yy with respect to uu:
dydu=12u. \frac{dy}{du} = \frac{1}{2\sqrt{u}}.
  1. By the chain rule:
dydx=dyduβ‹…dudx=12x+xβ‹…(1+12x). \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \frac{1}{2\sqrt{x+\sqrt{x}}} \cdot \left(1 + \frac{1}{2\sqrt{x}}\right).
  1. Simplify:
dydx=1+12x2x+x=2x+14xx+x. \frac{dy}{dx} = \frac{1 + \frac{1}{2\sqrt{x}}}{2\sqrt{x+\sqrt{x}}} = \frac{2\sqrt{x}+1}{4\sqrt{x}\sqrt{x+\sqrt{x}}}.

Case 3: y=xa+xaβˆ’xy = x \sqrt{\frac{a+x}{a-x}}

  1. Let u=a+xaβˆ’xu = \frac{a+x}{a-x}, so y=xuy = x\sqrt{u}.
  2. Differentiate uu with respect to xx:
dudx=(aβˆ’x)(1)βˆ’(a+x)(βˆ’1)(aβˆ’x)2=2a(aβˆ’x)2. \frac{du}{dx} = \frac{(a-x)(1) - (a+x)(-1)}{(a-x)^2} = \frac{2a}{(a-x)^2}.
  1. Differentiate yy with respect to xx using the product rule:
dydx=uβ‹…dxdx+xβ‹…12uβ‹…dudx. \frac{dy}{dx} = \sqrt{u} \cdot \frac{dx}{dx} + x \cdot \frac{1}{2\sqrt{u}} \cdot \frac{du}{dx}.
  1. Substitute values:
dydx=a+xaβˆ’x+xβ‹…12a+xaβˆ’xβ‹…2a(aβˆ’x)2. \frac{dy}{dx} = \sqrt{\frac{a+x}{a-x}} + x \cdot \frac{1}{2\sqrt{\frac{a+x}{a-x}}} \cdot \frac{2a}{(a-x)^2}.

Case 4: y=(3x2βˆ’2x+7)6y = (3x^2 - 2x + 7)^6

  1. Let u=3x2βˆ’2x+7u = 3x^2 - 2x + 7, so y=u6y = u^6.
  2. Differentiate uu with respect to xx:
dudx=6xβˆ’2. \frac{du}{dx} = 6x - 2.
  1. Differentiate yy with respect to uu:
dydu=6u5. \frac{dy}{du} = 6u^5.
  1. By the chain rule:
dydx=dyduβ‹…dudx=6(3x2βˆ’2x+7)5β‹…(6xβˆ’2). \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = 6(3x^2 - 2x + 7)^5 \cdot (6x - 2).

Case 5: y=a2+x2a2βˆ’x2y = \sqrt{\frac{a^2+x^2}{a^2-x^2}}

  1. Let u=a2+x2a2βˆ’x2u = \frac{a^2+x^2}{a^2-x^2}, so y=u1/2y = u^{1/2}.
  2. Differentiate uu with respect to xx:
dudx=(a2βˆ’x2)(2x)βˆ’(a2+x2)(βˆ’2x)(a2βˆ’x2)2=4a2x(a2βˆ’x2)2. \frac{du}{dx} = \frac{(a^2-x^2)(2x) - (a^2+x^2)(-2x)}{(a^2-x^2)^2} = \frac{4a^2x}{(a^2-x^2)^2}.
  1. Differentiate yy with respect to uu:
dydu=12uβˆ’1/2. \frac{dy}{du} = \frac{1}{2} u^{-1/2}.
  1. By the chain rule:
dydx=12a2βˆ’x2a2+x2β‹…4a2x(a2βˆ’x2)2. \frac{dy}{dx} = \frac{1}{2} \sqrt{\frac{a^2-x^2}{a^2+x^2}} \cdot \frac{4a^2x}{(a^2-x^2)^2}.
  1. Simplify:
dydx=2a2xa2+x2(a2βˆ’x2)3/2. \frac{dy}{dx} = \frac{2a^2x}{\sqrt{a^2+x^2}(a^2-x^2)^{3/2}}.

Key Formulas or Methods Used

  1. Chain Rule: dydx=dyduβ‹…dudx\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}.
  2. Product Rule: d(uv)dx=udvdx+vdudx\frac{d(uv)}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}.
  3. Square Root Derivatives: ddx(u)=12uβ‹…dudx\frac{d}{dx}(\sqrt{u}) = \frac{1}{2\sqrt{u}} \cdot \frac{du}{dx}.

Summary of Steps

  1. Identify a substitution to simplify the function.
  2. Differentiate the substitution uu with respect to xx.
  3. Apply the chain rule and substitute back the original expressions.
  4. Simplify to the final derivative.