Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

2.4 Q-2

Question Statement

Find dydx\frac{dy}{dx} for the following equations:

  1. 3x+4y+7=03x + 4y + 7 = 0
  2. xy+y2=2xy + y^2 = 2
  3. x2βˆ’4xyβˆ’5y=0x^2 - 4xy - 5y = 0
  4. 4x2+2hxy+by2+2gx+2fy+c=04x^2 + 2hx y + by^2 + 2gx + 2fy + c = 0
  5. x1+y+y1+x=0x \sqrt{1+y} + y \sqrt{1+x} = 0
  6. y(x2βˆ’1)=xx2+4y(x^2 - 1) = x \sqrt{x^2 + 4}

Background and Explanation

To solve these problems, we use implicit differentiation, which involves differentiating both sides of an equation with respect to xx, applying the chain rule wherever yy appears. This process will yield terms involving dydx\frac{dy}{dx}, which can then be isolated to find the derivative.

Key concepts:

  • The chain rule: ddx[f(g(x))]=fβ€²(g(x))β‹…gβ€²(x)\frac{d}{dx}[f(g(x))] = f'(g(x)) \cdot g'(x).
  • Differentiation of implicit terms like yy: ddx[y]=dydx\frac{d}{dx}[y] = \frac{dy}{dx}.

Solution

1. Solve for dydx\frac{dy}{dx} when 3x+4y+7=03x + 4y + 7 = 0:

Differentiate both sides with respect to xx:

ddx[3x+4y+7]=0\frac{d}{dx}[3x + 4y + 7] = 0

Apply linear differentiation:

3+4dydx=03 + 4\frac{dy}{dx} = 0

Rearrange to isolate dydx\frac{dy}{dx}:

4dydx=βˆ’3β‡’dydx=βˆ’344\frac{dy}{dx} = -3 \quad \Rightarrow \quad \frac{dy}{dx} = \frac{-3}{4}

2. Solve for dydx\frac{dy}{dx} when xy+y2=2xy + y^2 = 2:

Differentiate both sides with respect to xx:

ddx[xy]+ddx[y2]=ddx[2]\frac{d}{dx}[xy] + \frac{d}{dx}[y^2] = \frac{d}{dx}[2]

Apply the product rule to xyxy:

xdydx+y+2ydydx=0x\frac{dy}{dx} + y + 2y\frac{dy}{dx} = 0

Group terms involving dydx\frac{dy}{dx}:

(x+2y)dydx=βˆ’y(x + 2y)\frac{dy}{dx} = -y

Solve for dydx\frac{dy}{dx}:

dydx=βˆ’yx+2y\frac{dy}{dx} = \frac{-y}{x + 2y}

3. Solve for dydx\frac{dy}{dx} when x2βˆ’4xyβˆ’5y=0x^2 - 4xy - 5y = 0:

Differentiate both sides with respect to xx:

ddx[x2]βˆ’4ddx[xy]βˆ’5ddx[y]=0\frac{d}{dx}[x^2] - 4\frac{d}{dx}[xy] - 5\frac{d}{dx}[y] = 0

Apply the product rule to xyxy:

2xβˆ’4(dydxβ‹…x+y)βˆ’5dydx=02x - 4\left(\frac{dy}{dx} \cdot x + y\right) - 5\frac{dy}{dx} = 0

Simplify and group dydx\frac{dy}{dx}:

(4x+5)dydx=2xβˆ’4y(4x + 5)\frac{dy}{dx} = 2x - 4y

Solve for dydx\frac{dy}{dx}:

dydx=2xβˆ’4y4x+5\frac{dy}{dx} = \frac{2x - 4y}{4x + 5}

4. Solve for dydx\frac{dy}{dx} when 4x2+2hxy+by2+2gx+2fy+c=04x^2 + 2hxy + by^2 + 2gx + 2fy + c = 0:

Differentiate both sides with respect to xx:

8x+2h(dydxβ‹…x+y)+2bydydx+2g+2fdydx=08x + 2h\left(\frac{dy}{dx} \cdot x + y\right) + 2b y\frac{dy}{dx} + 2g + 2f\frac{dy}{dx} = 0

Group terms involving dydx\frac{dy}{dx}:

2(hx+by+f)dydx=βˆ’2(4x+hy+g)2(hx + by + f)\frac{dy}{dx} = -2(4x + hy + g)

Solve for dydx\frac{dy}{dx}:

dydx=βˆ’2(4x+hy+g)2(hx+by+f)\frac{dy}{dx} = \frac{-2(4x + hy + g)}{2(hx + by + f)}

5. Solve for dydx\frac{dy}{dx} when x1+y+y1+x=0x\sqrt{1+y} + y\sqrt{1+x} = 0:

Differentiate both sides with respect to xx, applying the product and chain rules:

1+y+x21+ydydx+1+xdydx+y21+x=0\sqrt{1+y} + \frac{x}{2\sqrt{1+y}}\frac{dy}{dx} + \sqrt{1+x}\frac{dy}{dx} + \frac{y}{2\sqrt{1+x}} = 0

Group terms involving dydx\frac{dy}{dx}:

(x21+y+1+x)dydx=βˆ’(1+y+y21+x)\left(\frac{x}{2\sqrt{1+y}} + \sqrt{1+x}\right)\frac{dy}{dx} = -\left(\sqrt{1+y} + \frac{y}{2\sqrt{1+x}}\right)

Solve for dydx\frac{dy}{dx}:

dydx=βˆ’(1+y+y21+x)x21+y+1+x\frac{dy}{dx} = \frac{-\left(\sqrt{1+y} + \frac{y}{2\sqrt{1+x}}\right)}{\frac{x}{2\sqrt{1+y}} + \sqrt{1+x}}

6. Solve for dydx\frac{dy}{dx} when y(x2βˆ’1)=xx2+4y(x^2 - 1) = x\sqrt{x^2 + 4}:

Differentiate both sides with respect to xx:

dydx(x2βˆ’1)+y(2x)=x2+4+x2x2+4\frac{dy}{dx}(x^2 - 1) + y(2x) = \sqrt{x^2 + 4} + \frac{x^2}{\sqrt{x^2 + 4}}

Group terms involving dydx\frac{dy}{dx}:

(x2βˆ’1)dydx=x2+4+x2x2+4βˆ’2xy(x^2 - 1)\frac{dy}{dx} = \sqrt{x^2 + 4} + \frac{x^2}{\sqrt{x^2 + 4}} - 2xy

Solve for dydx\frac{dy}{dx}:

dydx=x2+4+x2x2+4βˆ’2xyx2βˆ’1\frac{dy}{dx} = \frac{\sqrt{x^2 + 4} + \frac{x^2}{\sqrt{x^2 + 4}} - 2xy}{x^2 - 1}

Key Formulas or Methods Used

  1. Chain Rule: For nested functions, differentiate the outer function first, then multiply by the derivative of the inner function.
  2. Product Rule: ddx[uv]=uβ€²v+uvβ€²\frac{d}{dx}[uv] = u'v + uv'.
  3. Linear Differentiation: Constants and terms are differentiated directly.

Summary of Steps

  1. Differentiate the equation with respect to xx, applying relevant rules.
  2. Use the product and chain rules for terms involving yy.
  3. Group all dydx\frac{dy}{dx} terms on one side of the equation.
  4. Solve for dydx\frac{dy}{dx} by isolating it.