Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

2.4 Q-3

Question Statement

Find dydx\frac{dy}{dx} for the given parametric equations:

  1. x=θ+1θ,y=θ+1x = \theta + \frac{1}{\theta}, \quad y = \theta + 1
  2. x=a(1−t)1+t2,y=2bt1+t2x = \frac{a(1-t)}{1+t^2}, \quad y = \frac{2bt}{1+t^2}

Background and Explanation

To find the derivative dydx\frac{dy}{dx} for parametric equations, we use the chain rule. The chain rule for parametric equations is:

dydx=dydθdxdθ\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}

This requires calculating the derivatives of xx and yy with respect to the parameter (e.g., θ\theta or tt).


Solution

Part 1: x=θ+1θ,y=θ+1x = \theta + \frac{1}{\theta}, \quad y = \theta + 1

  1. Find dxdθ\frac{dx}{d\theta}:
dxdθ=ddθ(θ+1θ)=1−1θ2. \frac{dx}{d\theta} = \frac{d}{d\theta}\left(\theta + \frac{1}{\theta}\right) = 1 - \frac{1}{\theta^2}.

Combine under a common denominator:

dxdθ=θ2−1θ2. \frac{dx}{d\theta} = \frac{\theta^2 - 1}{\theta^2}.
  1. Find dydθ\frac{dy}{d\theta}:
y=θ+1  ⟹  dydθ=1. y = \theta + 1 \implies \frac{dy}{d\theta} = 1.
  1. Find dydx\frac{dy}{dx}: Using the chain rule:
dydx=dydθdxdθ=1θ2−1θ2=θ2θ2−1. \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{1}{\frac{\theta^2 - 1}{\theta^2}} = \frac{\theta^2}{\theta^2 - 1}.

Answer:

dydx=θ2θ2−1. \frac{dy}{dx} = \frac{\theta^2}{\theta^2 - 1}.

Part 2: x=a(1−t)1+t2,y=2bt1+t2x = \frac{a(1-t)}{1+t^2}, \quad y = \frac{2bt}{1+t^2}

  1. Find dxdt\frac{dx}{dt}: Using the quotient rule:
x=a(1−t)1+t2  ⟹  dxdt=(1+t2)(−a)−a(1−t)(2t)(1+t2)2. x = \frac{a(1-t)}{1+t^2} \implies \frac{dx}{dt} = \frac{(1+t^2)(-a) - a(1-t)(2t)}{(1+t^2)^2}.

Simplify the numerator:

dxdt=−a(1+t2)−2at(1−t)(1+t2)2. \frac{dx}{dt} = \frac{-a(1+t^2) - 2at(1-t)}{(1+t^2)^2}.

Expand terms:

dxdt=−a−at2−2at+2at2(1+t2)2=−a−2at+at2(1+t2)2. \frac{dx}{dt} = \frac{-a - at^2 - 2at + 2at^2}{(1+t^2)^2} = \frac{-a - 2at + at^2}{(1+t^2)^2}.
  1. Find dydt\frac{dy}{dt}: Using the quotient rule:
y=2bt1+t2  ⟹  dydt=(1+t2)(2b)−2bt(2t)(1+t2)2. y = \frac{2bt}{1+t^2} \implies \frac{dy}{dt} = \frac{(1+t^2)(2b) - 2bt(2t)}{(1+t^2)^2}.

Simplify the numerator:

dydt=2b(1+t2)−4bt2(1+t2)2. \frac{dy}{dt} = \frac{2b(1+t^2) - 4bt^2}{(1+t^2)^2}.

Combine terms:

dydt=2b−2bt2(1+t2)2. \frac{dy}{dt} = \frac{2b - 2bt^2}{(1+t^2)^2}.
  1. Find dydx\frac{dy}{dx}: Using the chain rule:
dydx=dydtdxdt=2b(1−t2)(1+t2)2−a(1+t2)−2at(1+t2)2. \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\frac{2b(1-t^2)}{(1+t^2)^2}}{\frac{-a(1+t^2) - 2at}{(1+t^2)^2}}.

Cancel common terms (1+t2)2(1+t^2)^2:

dydx=2b(1−t2)−a(1+t2)−2at. \frac{dy}{dx} = \frac{2b(1-t^2)}{-a(1+t^2) - 2at}.

Factor out common terms:

dydx=−b(1−t2)a(1+t2)+2at. \frac{dy}{dx} = -\frac{b(1-t^2)}{a(1+t^2) + 2at}.

Answer:

dydx=−b(1−t2)a(1+t2)+2at. \frac{dy}{dx} = -\frac{b(1-t^2)}{a(1+t^2) + 2at}.

Key Formulas or Methods Used

  1. Derivative of parametric equations:
dydx=dydθdxdθ. \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}.
  1. Quotient Rule:
ddx(uv)=vdudx−udvdxv2. \frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}.

Summary of Steps

Part 1

  1. Compute dxdθ\frac{dx}{d\theta} and dydθ\frac{dy}{d\theta}.
  2. Use the chain rule to find dydx\frac{dy}{dx}.
  3. Simplify the result: dydx=θ2θ2−1\frac{dy}{dx} = \frac{\theta^2}{\theta^2 - 1}.

Part 2

  1. Compute dxdt\frac{dx}{dt} and dydt\frac{dy}{dt} using the quotient rule.
  2. Use the chain rule: dydx=dydtdxdt\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}.
  3. Simplify the result: −b(1−t2)a(1+t2)+2at-\frac{b(1-t^2)}{a(1+t^2) + 2at}.