Question Statement
Find dxdy​ for the given parametric equations:
- x=θ+θ1​,y=θ+1
- x=1+t2a(1−t)​,y=1+t22bt​
Background and Explanation
To find the derivative dxdy​ for parametric equations, we use the chain rule. The chain rule for parametric equations is:
dxdy​=dθdx​dθdy​​
This requires calculating the derivatives of x and y with respect to the parameter (e.g., θ or t).
Solution
Part 1: x=θ+θ1​,y=θ+1
- Find dθdx​:
dθdx​=dθd​(θ+θ1​)=1−θ21​.
Combine under a common denominator:
dθdx​=θ2θ2−1​.
- Find dθdy​:
y=θ+1⟹dθdy​=1.
- Find dxdy​:
Using the chain rule:
dxdy​=dθdx​dθdy​​=θ2θ2−1​1​=θ2−1θ2​.
Answer:
dxdy​=θ2−1θ2​.
Part 2: x=1+t2a(1−t)​,y=1+t22bt​
- Find dtdx​:
Using the quotient rule:
x=1+t2a(1−t)​⟹dtdx​=(1+t2)2(1+t2)(−a)−a(1−t)(2t)​.
Simplify the numerator:
dtdx​=(1+t2)2−a(1+t2)−2at(1−t)​.
Expand terms:
dtdx​=(1+t2)2−a−at2−2at+2at2​=(1+t2)2−a−2at+at2​.
- Find dtdy​:
Using the quotient rule:
y=1+t22bt​⟹dtdy​=(1+t2)2(1+t2)(2b)−2bt(2t)​.
Simplify the numerator:
dtdy​=(1+t2)22b(1+t2)−4bt2​.
Combine terms:
dtdy​=(1+t2)22b−2bt2​.
- Find dxdy​:
Using the chain rule:
dxdy​=dtdx​dtdy​​=(1+t2)2−a(1+t2)−2at​(1+t2)22b(1−t2)​​.
Cancel common terms (1+t2)2:
dxdy​=−a(1+t2)−2at2b(1−t2)​.
Factor out common terms:
dxdy​=−a(1+t2)+2atb(1−t2)​.
Answer:
dxdy​=−a(1+t2)+2atb(1−t2)​.
- Derivative of parametric equations:
dxdy​=dθdx​dθdy​​.
- Quotient Rule:
dxd​(vu​)=v2vdxdu​−udxdv​​.
Summary of Steps
Part 1
- Compute dθdx​ and dθdy​.
- Use the chain rule to find dxdy​.
- Simplify the result: dxdy​=θ2−1θ2​.
Part 2
- Compute dtdx​ and dtdy​ using the quotient rule.
- Use the chain rule: dxdy​=dtdx​dtdy​​.
- Simplify the result: −a(1+t2)+2atb(1−t2)​.