Question Statement
Differentiate the given expressions with respect to the specified variables.
Background and Explanation
To solve these problems, we use differentiation techniques such as the chain rule and the quotient rule. The chain rule helps us find the derivative of composite functions, while the quotient rule is applied when dealing with ratios of functions.
Solution
Part i: Differentiate x2βx21β w.r.t. x4
-
Assign Variables:
Let:
y=x2βx21β(1)andu=x4(2).
- Find dxdyβ:
dxdyβ=dxdβ(x2βx21β)=2x+x32β.
- Find dxduβ:
dxduβ=dxdβ(x4)=4x3.
- Apply the Chain Rule:
dudyβ=dxdyββ
dxduβ1β.
Substitute:
dudyβ=(2x+x32β)β
4x31β.
- Simplify:
dudyβ=2x4x4+1β.
Answer: dudyβ=2x4x4+1β.
Part ii: Differentiate (1+x2)n w.r.t. x2
-
Assign Variables:
Let:
y=(1+x2)nandu=x2.
- Find dxdyβ:
Using the chain rule:
dxdyβ=n(1+x2)nβ1β
dxdβ(1+x2)=n(1+x2)nβ1β
2x.
Simplify:
dxdyβ=2nx(1+x2)nβ1.
- Find dudyβ:
Using dudyβ=dxdyββ
dxduβ1β, and noting dxduβ=2x:
dudyβ=2x2nx(1+x2)nβ1β.
- Simplify:
dudyβ=n(1+x2)nβ1.
Answer: dudyβ=n(1+x2)nβ1.
Part iii: Differentiate x2β1x2+1β w.r.t. x+1xβ1β
-
Assign Variables:
Let:
y=x2β1x2+1βandu=x+1xβ1β.
- Find dxdyβ:
Using the quotient rule:
dxdyβ=(x2β1)2(2x)(x2β1)β(2x)(x2+1)β.
Simplify:
dxdyβ=(x2β1)2β4xβ.
- Find dxduβ:
Using the quotient rule:
dxduβ=(x+1)2(1)(x+1)β(1)(xβ1)β.
Simplify:
dxduβ=(x+1)22β.
- Apply the Chain Rule:
dudyβ=dxdyββ
dudxβ.
Substitute:
dudyβ=(x2β1)2β4xββ
2(x+1)2β.
- Simplify:
dudyβ=(x2β1)2β2x(x+1)2β.
Answer: dudyβ=(x2β1)2β2x(x+1)2β.
- Quotient Rule:
dxdβ(g(x)f(x)β)=[g(x)]2fβ²(x)g(x)βf(x)gβ²(x)β.
- Chain Rule:
dudyβ=dxdyββ
dudxβ.
Summary of Steps
- Assign variables to simplify the functions.
- Differentiate both numerator and denominator separately.
- Apply the chain rule or quotient rule as needed.
- Simplify the expressions for clarity.