Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

2.5 Q-1

Question Statement

Differentiate the following trigonometric functions from the first principle:

i. sin(2x)\sin(2x)

ii. tan(3x)\tan(3x)

iii. sin(2x)+cos(2x)\sin(2x) + \cos(2x)

iv. cos(x2)\cos(x^2)

v. tan2(x)\tan^2(x)

vi. tan(x)\sqrt{\tan(x)}


Background and Explanation

To differentiate a function using the first principle (or definition of the derivative), we use the following formula:

dydx=limδx0f(x+δx)f(x)δx\frac{dy}{dx} = \lim_{\delta x \to 0} \frac{f(x + \delta x) - f(x)}{\delta x}

This method involves finding the difference between the function at x+δxx + \delta x and at xx, then dividing by δx\delta x and taking the limit as δx\delta x approaches zero.


Solution

i. Differentiating sin(2x)\sin(2x):

Let y=sin(2x)y = \sin(2x).

  1. Apply the first principle:
δy=sin(2(x+δx))sin(2x) \delta y = \sin(2(x + \delta x)) - \sin(2x)
  1. Use the trigonometric identity for sine:
δy=2cos(4x+2δx2)sin(2δx2) \delta y = 2 \cos \left( \frac{4x + 2\delta x}{2} \right) \sin \left( \frac{2\delta x}{2} \right)
  1. Simplify:
δy=2sin(δx)cos(2x+δx) \delta y = 2 \sin(\delta x) \cdot \cos(2x + \delta x)
  1. Divide by δx\delta x and take the limit:
dydx=2limδx0cos(2x+δx)limδx0sin(δx)δx \frac{dy}{dx} = 2 \lim_{\delta x \to 0} \cos(2x + \delta x) \lim_{\delta x \to 0} \frac{\sin(\delta x)}{\delta x}

Using limδx0sin(δx)δx=1\lim_{\delta x \to 0} \frac{\sin(\delta x)}{\delta x} = 1, we get:

dydx=2cos(2x) \frac{dy}{dx} = 2 \cos(2x)

ii. Differentiating tan(3x)\tan(3x):

Let y=tan(3x)y = \tan(3x).

  1. Apply the first principle:
δy=tan(3(x+δx))tan(3x) \delta y = \tan(3(x + \delta x)) - \tan(3x)
  1. Use the identity for the difference of tangents:
δy=sin(3(x+δx))cos(3x)cos(3(x+δx))sin(3x)cos(3(x+δx))cos(3x) \delta y = \frac{\sin(3(x + \delta x)) \cos(3x) - \cos(3(x + \delta x)) \sin(3x)}{\cos(3(x + \delta x)) \cos(3x)}
  1. Simplify the expression:
δy=sin(δx)δx3sec2(3x) \delta y = \frac{\sin(\delta x)}{\delta x} \cdot 3 \sec^2(3x)
  1. Taking the limit:
dydx=3sec2(3x) \frac{dy}{dx} = 3 \sec^2(3x)

iii. Differentiating sin(2x)+cos(2x)\sin(2x) + \cos(2x):

Let y=sin(2x)+cos(2x)y = \sin(2x) + \cos(2x).

  1. Apply the first principle:
δy=(sin(2(x+δx))sin(2x))+(cos(2(x+δx))cos(2x)) \delta y = \left( \sin(2(x + \delta x)) - \sin(2x) \right) + \left( \cos(2(x + \delta x)) - \cos(2x) \right)
  1. Use trigonometric identities for sine and cosine:
δy=2sin(δx)cos(2x+δx)2sin(δx)sin(2x+δx) \delta y = 2 \sin(\delta x) \cos(2x + \delta x) - 2 \sin(\delta x) \sin(2x + \delta x)
  1. Divide by δx\delta x and take the limit:
dydx=2(cos(2x)sin(2x)) \frac{dy}{dx} = 2 \left( \cos(2x) - \sin(2x) \right)

iv. Differentiating cos(x2)\cos(x^2):

Let y=cos(x2)y = \cos(x^2).

  1. Apply the first principle:
δy=cos((x+δx)2)cos(x2) \delta y = \cos((x + \delta x)^2) - \cos(x^2)
  1. Use the identity for the difference of cosines:
δy=2xsin(x2) \delta y = -2x \sin(x^2)
  1. Taking the limit:
dydx=2xsin(x2) \frac{dy}{dx} = -2x \sin(x^2)

v. Differentiating tan2(x)\tan^2(x):

Let y=tan2(x)y = \tan^2(x).

  1. Apply the first principle:
δy=tan2(x+δx)tan2(x) \delta y = \tan^2(x + \delta x) - \tan^2(x)
  1. Use the difference of squares:
δy=(tan(x+δx)tan(x))(tan(x+δx)+tan(x)) \delta y = \left( \tan(x + \delta x) - \tan(x) \right) \left( \tan(x + \delta x) + \tan(x) \right)
  1. Simplify:
δy=2tan(x)sec2(x) \delta y = 2 \tan(x) \sec^2(x)
  1. Taking the limit:
dydx=2tan(x)sec2(x) \frac{dy}{dx} = 2 \tan(x) \sec^2(x)

vi. Differentiating tan(x)\sqrt{\tan(x)}:

Let y=tan(x)y = \sqrt{\tan(x)}.

  1. Apply the first principle:
δy=tan(x+δx)tan(x) \delta y = \sqrt{\tan(x + \delta x)} - \sqrt{\tan(x)}
  1. Rationalize the expression:
δy=tan(x+δx)tan(x)tan(x+δx)+tan(x) \delta y = \frac{\tan(x + \delta x) - \tan(x)}{\sqrt{\tan(x + \delta x)} + \sqrt{\tan(x)}}
  1. Taking the limit:
dydx=12tan(x)sec2(x) \frac{dy}{dx} = \frac{1}{2\sqrt{\tan(x)}} \sec^2(x)

Key Formulas or Methods Used

  • First Principle of Derivatives:
dydx=limδx0f(x+δx)f(x)δx \frac{dy}{dx} = \lim_{\delta x \to 0} \frac{f(x + \delta x) - f(x)}{\delta x}
  • Trigonometric Identities:
    • sin(A+B)=sin(A)cos(B)+cos(A)sin(B)\sin(A + B) = \sin(A) \cos(B) + \cos(A) \sin(B)
    • cos(A+B)=cos(A)cos(B)sin(A)sin(B)\cos(A + B) = \cos(A) \cos(B) - \sin(A) \sin(B)
    • tan(A+B)=tan(A)+tan(B)1tan(A)tan(B)\tan(A + B) = \frac{\tan(A) + \tan(B)}{1 - \tan(A) \tan(B)}

Summary of Steps

  1. For each function: Identify the function to differentiate and apply the first principle of derivatives.
  2. Simplify: Use relevant trigonometric identities to simplify the expression.
  3. Take the limit: After simplifying, divide by δx\delta x and take the limit as δx0\delta x \to 0.
  4. Final result: Express the derivative in its simplest form.