Question Statement
Differentiate the following trigonometric functions from the first principle:
i. sin(2x)
ii. tan(3x)
iii. sin(2x)+cos(2x)
iv. cos(x2)
v. tan2(x)
vi. tan(x)
Background and Explanation
To differentiate a function using the first principle (or definition of the derivative), we use the following formula:
dxdy=δx→0limδxf(x+δx)−f(x)
This method involves finding the difference between the function at x+δx and at x, then dividing by δx and taking the limit as δx approaches zero.
Solution
i. Differentiating sin(2x):
Let y=sin(2x).
- Apply the first principle:
δy=sin(2(x+δx))−sin(2x)
- Use the trigonometric identity for sine:
δy=2cos(24x+2δx)sin(22δx)
- Simplify:
δy=2sin(δx)⋅cos(2x+δx)
- Divide by δx and take the limit:
dxdy=2δx→0limcos(2x+δx)δx→0limδxsin(δx)
Using limδx→0δxsin(δx)=1, we get:
dxdy=2cos(2x)
ii. Differentiating tan(3x):
Let y=tan(3x).
- Apply the first principle:
δy=tan(3(x+δx))−tan(3x)
- Use the identity for the difference of tangents:
δy=cos(3(x+δx))cos(3x)sin(3(x+δx))cos(3x)−cos(3(x+δx))sin(3x)
- Simplify the expression:
δy=δxsin(δx)⋅3sec2(3x)
- Taking the limit:
dxdy=3sec2(3x)
iii. Differentiating sin(2x)+cos(2x):
Let y=sin(2x)+cos(2x).
- Apply the first principle:
δy=(sin(2(x+δx))−sin(2x))+(cos(2(x+δx))−cos(2x))
- Use trigonometric identities for sine and cosine:
δy=2sin(δx)cos(2x+δx)−2sin(δx)sin(2x+δx)
- Divide by δx and take the limit:
dxdy=2(cos(2x)−sin(2x))
iv. Differentiating cos(x2):
Let y=cos(x2).
- Apply the first principle:
δy=cos((x+δx)2)−cos(x2)
- Use the identity for the difference of cosines:
δy=−2xsin(x2)
- Taking the limit:
dxdy=−2xsin(x2)
v. Differentiating tan2(x):
Let y=tan2(x).
- Apply the first principle:
δy=tan2(x+δx)−tan2(x)
- Use the difference of squares:
δy=(tan(x+δx)−tan(x))(tan(x+δx)+tan(x))
- Simplify:
δy=2tan(x)sec2(x)
- Taking the limit:
dxdy=2tan(x)sec2(x)
vi. Differentiating tan(x):
Let y=tan(x).
- Apply the first principle:
δy=tan(x+δx)−tan(x)
- Rationalize the expression:
δy=tan(x+δx)+tan(x)tan(x+δx)−tan(x)
- Taking the limit:
dxdy=2tan(x)1sec2(x)
- First Principle of Derivatives:
dxdy=δx→0limδxf(x+δx)−f(x)
- Trigonometric Identities:
- sin(A+B)=sin(A)cos(B)+cos(A)sin(B)
- cos(A+B)=cos(A)cos(B)−sin(A)sin(B)
- tan(A+B)=1−tan(A)tan(B)tan(A)+tan(B)
Summary of Steps
- For each function: Identify the function to differentiate and apply the first principle of derivatives.
- Simplify: Use relevant trigonometric identities to simplify the expression.
- Take the limit: After simplifying, divide by δx and take the limit as δx→0.
- Final result: Express the derivative in its simplest form.