Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

2.5 Q-10

Question Statement

Differentiate the following expressions with respect to xx:

i. cosβ‘βˆ’1xa\cos^{-1} \frac{x}{a}

ii. 1asinβ‘βˆ’1(ax)\frac{1}{a} \sin^{-1} \left( \frac{a}{x} \right)

iii. sinβ‘βˆ’11βˆ’x2\sin^{-1} \sqrt{1 - x^{2}}

iv. secβ‘βˆ’1(x2+1x2βˆ’1)\sec^{-1} \left( \frac{x^2 + 1}{x^2 - 1} \right)

v. cotβ‘βˆ’1(2x1βˆ’x2)\cot^{-1} \left( \frac{2x}{1 - x^2} \right)

vi. cosβ‘βˆ’1(1βˆ’x21+x2)\cos^{-1} \left( \frac{1 - x^2}{1 + x^2} \right)


Background and Explanation

To differentiate inverse trigonometric functions, we use standard differentiation formulas for each type. Here’s a quick overview:

  1. Inverse Cosine: The derivative of cosβ‘βˆ’1(u)\cos^{-1}(u) is βˆ’11βˆ’u2β‹…dudx-\frac{1}{\sqrt{1 - u^2}} \cdot \frac{du}{dx}.
  2. Inverse Sine: The derivative of sinβ‘βˆ’1(u)\sin^{-1}(u) is 11βˆ’u2β‹…dudx\frac{1}{\sqrt{1 - u^2}} \cdot \frac{du}{dx}.
  3. Secant Inverse: The derivative of secβ‘βˆ’1(u)\sec^{-1}(u) is 1∣u∣u2βˆ’1β‹…dudx\frac{1}{|u|\sqrt{u^2 - 1}} \cdot \frac{du}{dx}.
  4. Cotangent Inverse: The derivative of cotβ‘βˆ’1(u)\cot^{-1}(u) is βˆ’11+u2β‹…dudx-\frac{1}{1 + u^2} \cdot \frac{du}{dx}.

We’ll apply these formulas to each of the given functions.


Solution

i. Differentiate cosβ‘βˆ’1xa\cos^{-1} \frac{x}{a} with respect to xx

Let y=cosβ‘βˆ’1xay = \cos^{-1} \frac{x}{a}.

Differentiating both sides:

dydx=βˆ’11βˆ’(xa)2β‹…ddx(xa)\frac{dy}{dx} = -\frac{1}{\sqrt{1 - \left( \frac{x}{a} \right)^2}} \cdot \frac{d}{dx} \left( \frac{x}{a} \right)

Since ddx(xa)=1a\frac{d}{dx} \left( \frac{x}{a} \right) = \frac{1}{a}, the derivative becomes:

dydx=βˆ’11βˆ’x2a2β‹…1a\frac{dy}{dx} = -\frac{1}{\sqrt{1 - \frac{x^2}{a^2}}} \cdot \frac{1}{a}

Simplifying:

dydx=βˆ’1a2βˆ’x2β‹…1a\frac{dy}{dx} = -\frac{1}{\sqrt{a^2 - x^2}} \cdot \frac{1}{a}

Thus, the final derivative is:

dydx=βˆ’1a2+x2\frac{dy}{dx} = -\frac{1}{a^2 + x^2}

ii. Differentiate 1asinβ‘βˆ’1(ax)\frac{1}{a} \sin^{-1} \left( \frac{a}{x} \right) with respect to xx

Let y=1asinβ‘βˆ’1(ax)y = \frac{1}{a} \sin^{-1} \left( \frac{a}{x} \right).

Differentiating both sides:

dydx=1aβ‹…11βˆ’(ax)2β‹…ddx(ax)\frac{dy}{dx} = \frac{1}{a} \cdot \frac{1}{\sqrt{1 - \left( \frac{a}{x} \right)^2}} \cdot \frac{d}{dx} \left( \frac{a}{x} \right)

Since ddx(ax)=βˆ’ax2\frac{d}{dx} \left( \frac{a}{x} \right) = -\frac{a}{x^2}, we get:

dydx=1aβ‹…1x2βˆ’a2β‹…(βˆ’ax2)\frac{dy}{dx} = \frac{1}{a} \cdot \frac{1}{\sqrt{x^2 - a^2}} \cdot \left( -\frac{a}{x^2} \right)

Simplifying:

dydx=βˆ’1xx2βˆ’a2\frac{dy}{dx} = \frac{-1}{x \sqrt{x^2 - a^2}}

Thus, the final derivative is:

dydx=βˆ’1xx2βˆ’a2\frac{dy}{dx} = \frac{-1}{x \sqrt{x^2 - a^2}}

iii. Differentiate sinβ‘βˆ’11βˆ’x2\sin^{-1} \sqrt{1 - x^2} with respect to xx

Let y=sinβ‘βˆ’11βˆ’x2y = \sin^{-1} \sqrt{1 - x^2}.

Differentiating both sides:

dydx=11βˆ’(1βˆ’x2)2β‹…ddx(1βˆ’x2)\frac{dy}{dx} = \frac{1}{\sqrt{1 - \left( \sqrt{1 - x^2} \right)^2}} \cdot \frac{d}{dx} \left( \sqrt{1 - x^2} \right)

Simplifying the first term:

dydx=1x2β‹…(βˆ’2x)\frac{dy}{dx} = \frac{1}{\sqrt{x^2}} \cdot (-2x)

Thus, the derivative becomes:

dydx=βˆ’22x1βˆ’x2=βˆ’11βˆ’x2\frac{dy}{dx} = \frac{-2}{2x \sqrt{1 - x^2}} = \frac{-1}{\sqrt{1 - x^2}}

iv. Differentiate secβ‘βˆ’1(x2+1x2βˆ’1)\sec^{-1} \left( \frac{x^2 + 1}{x^2 - 1} \right) with respect to xx

Let y=secβ‘βˆ’1(x2+1x2βˆ’1)y = \sec^{-1} \left( \frac{x^2 + 1}{x^2 - 1} \right).

Differentiating both sides:

dydx=1(x2+1x2βˆ’1)(x2+1x2βˆ’1)2βˆ’1β‹…ddx(x2+1x2βˆ’1)\frac{dy}{dx} = \frac{1}{\left( \frac{x^2 + 1}{x^2 - 1} \right) \sqrt{\left( \frac{x^2 + 1}{x^2 - 1} \right)^2 - 1}} \cdot \frac{d}{dx} \left( \frac{x^2 + 1}{x^2 - 1} \right)

After performing the chain rule and simplification, we obtain:

dydx=βˆ’4x(x2+1)x4+2x3+1βˆ’x4+2x2βˆ’1\frac{dy}{dx} = \frac{-4x}{(x^2 + 1) \sqrt{x^4 + 2x^3 + 1 - x^4 + 2x^2 - 1}}

Simplifying further:

dydx=βˆ’4x(x2+1)4x2\frac{dy}{dx} = \frac{-4x}{(x^2 + 1) \sqrt{4x^2}}

Thus, the final derivative is:

dydx=βˆ’4x(x2+1)β‹…2x=βˆ’2x2+1\frac{dy}{dx} = \frac{-4x}{(x^2 + 1) \cdot 2x} = \frac{-2}{x^2 + 1}

v. Differentiate cotβ‘βˆ’1(2x1βˆ’x2)\cot^{-1} \left( \frac{2x}{1 - x^2} \right) with respect to xx

Let y=cotβ‘βˆ’1(2x1βˆ’x2)y = \cot^{-1} \left( \frac{2x}{1 - x^2} \right).

Differentiating both sides:

dydx=βˆ’11+(2x1βˆ’x2)2β‹…ddx(2x1βˆ’x2)\frac{dy}{dx} = -\frac{1}{1 + \left( \frac{2x}{1 - x^2} \right)^2} \cdot \frac{d}{dx} \left( \frac{2x}{1 - x^2} \right)

After applying the quotient rule and simplifying, we get:

dydx=βˆ’21+x2\frac{dy}{dx} = \frac{-2}{1 + x^2}

vi. Differentiate cosβ‘βˆ’1(1βˆ’x21+x2)\cos^{-1} \left( \frac{1 - x^2}{1 + x^2} \right) with respect to xx

Let y=cosβ‘βˆ’1(1βˆ’x21+x2)y = \cos^{-1} \left( \frac{1 - x^2}{1 + x^2} \right).

Differentiating both sides:

dydx=βˆ’11βˆ’(1βˆ’x21+x2)2β‹…ddx(1βˆ’x21+x2)\frac{dy}{dx} = \frac{-1}{\sqrt{1 - \left( \frac{1 - x^2}{1 + x^2} \right)^2}} \cdot \frac{d}{dx} \left( \frac{1 - x^2}{1 + x^2} \right)

After applying the quotient rule and simplifying, we get:

dydx=2x2+1\frac{dy}{dx} = \frac{2}{x^2 + 1}

Key Formulas or Methods Used

  1. Derivative of Inverse Cosine: ddxcosβ‘βˆ’1(u)=βˆ’11βˆ’u2β‹…dudx\frac{d}{dx} \cos^{-1}(u) = -\frac{1}{\sqrt{1 - u^2}} \cdot \frac{du}{dx}

  2. Derivative of Inverse Sine: ddxsinβ‘βˆ’1(u)=11βˆ’u2β‹…dudx\frac{d}{dx} \sin^{-1}(u) = \frac{1}{\sqrt{1 - u^2}} \cdot \frac{du}{dx}

  3. Derivative of Secant Inverse: ddxsecβ‘βˆ’1(u)=1∣u∣u2βˆ’1β‹…dudx\frac{d}{dx} \sec^{-1}(u) = \frac{1}{|u|\sqrt{u^2 - 1}} \cdot \frac{du}{dx}

  4. Derivative of Cotangent Inverse: ddxcotβ‘βˆ’1(u)=βˆ’11+u2β‹…dudx\frac{d}{dx} \cot^{-1}(u) = -\frac{1}{1 + u^2} \cdot \frac{du}{dx}