Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

2.5 Q-12

Question Statement

We are given the function: y=tan⁑(tanβ‘βˆ’1x)y = \tan \left( \tan^{-1} x \right)

We are tasked with proving the following identity: (1+x2)y1βˆ’p(1+y2)=0\left( 1 + x^2 \right) y_1 - p \left( 1 + y^2 \right) = 0

where y1y_1 denotes the derivative of yy with respect to xx.


Background and Explanation

To solve this problem, we will need to apply basic differentiation rules, including the chain rule, to find the derivative of yy with respect to xx. The function involves the inverse tangent function (tanβ‘βˆ’1(x)\tan^{-1}(x)), and we need to differentiate it within the given tangent expression. Understanding how to differentiate composite functions is essential for solving this problem.


Solution

Step 1: Express yy

The given equation is: y=tan⁑(tanβ‘βˆ’1x)y = \tan \left( \tan^{-1} x \right)

This simplifies to y=xy = x, because: tan⁑(tanβ‘βˆ’1x)=x\tan \left( \tan^{-1} x \right) = x

Thus, we now know: y=xy = x

Step 2: Differentiate yy

Now, we differentiate both sides of the equation with respect to xx: dydx=ddx(tan⁑(tanβ‘βˆ’1x))\frac{d y}{d x} = \frac{d}{d x} \left( \tan \left( \tan^{-1} x \right) \right)

Using the chain rule, we differentiate the right-hand side: dydx=sec⁑2(tanβ‘βˆ’1x)β‹…ddx(tanβ‘βˆ’1x)\frac{d y}{d x} = \sec^2 \left( \tan^{-1} x \right) \cdot \frac{d}{d x} \left( \tan^{-1} x \right)

Now, recall the derivative of tanβ‘βˆ’1(x)\tan^{-1}(x): ddx(tanβ‘βˆ’1x)=11+x2\frac{d}{d x} \left( \tan^{-1} x \right) = \frac{1}{1 + x^2}

Thus, we get: dydx=sec⁑2(tanβ‘βˆ’1x)β‹…11+x2\frac{d y}{d x} = \sec^2 \left( \tan^{-1} x \right) \cdot \frac{1}{1 + x^2}

Step 3: Simplify sec⁑2(tanβ‘βˆ’1x)\sec^2 \left( \tan^{-1} x \right)

From trigonometric identities, we know: sec⁑2θ=1+tan⁑2θ\sec^2 \theta = 1 + \tan^2 \theta

So, sec⁑2(tanβ‘βˆ’1x)=1+x2\sec^2 \left( \tan^{-1} x \right) = 1 + x^2

Substituting this into the derivative, we have: dydx=(1+x2)β‹…11+x2\frac{d y}{d x} = (1 + x^2) \cdot \frac{1}{1 + x^2}

This simplifies to: dydx=1\frac{d y}{d x} = 1

Step 4: Set up the equation to prove

We need to prove: (1+x2)y1βˆ’p(1+y2)=0\left( 1 + x^2 \right) y_1 - p \left( 1 + y^2 \right) = 0

From the previous steps, we know that y1=1y_1 = 1, and y=xy = x, so: (1+x2)β‹…1βˆ’p(1+x2)=0\left( 1 + x^2 \right) \cdot 1 - p \left( 1 + x^2 \right) = 0

This simplifies to: (1+x2)βˆ’p(1+x2)=0\left( 1 + x^2 \right) - p \left( 1 + x^2 \right) = 0

Factoring out (1+x2)(1 + x^2), we get: (1+x2)(1βˆ’p)=0(1 + x^2) \left( 1 - p \right) = 0

Step 5: Conclusion

For the equation to hold true, we must have: 1βˆ’p=01 - p = 0

Therefore, p=1p = 1, which completes the proof.

Hence, the identity is proven as: (1+x2)y1βˆ’p(1+y2)=0\left( 1 + x^2 \right) y_1 - p \left( 1 + y^2 \right) = 0


Key Formulas or Methods Used

  1. Derivative of Inverse Tangent: ddx(tanβ‘βˆ’1x)=11+x2\frac{d}{dx} \left( \tan^{-1} x \right) = \frac{1}{1 + x^2}

  2. Trigonometric Identity: sec⁑2θ=1+tan⁑2θ\sec^2 \theta = 1 + \tan^2 \theta


Summary of Steps

  1. Simplify y=tan⁑(tanβ‘βˆ’1x)y = \tan \left( \tan^{-1} x \right) to y=xy = x.
  2. Differentiate y=xy = x to get y1=1y_1 = 1.
  3. Set up the equation (1+x2)y1βˆ’p(1+y2)=0\left( 1 + x^2 \right) y_1 - p \left( 1 + y^2 \right) = 0.
  4. Simplify the equation to (1+x2)(1βˆ’p)=0(1 + x^2) (1 - p) = 0.
  5. Conclude that p=1p = 1, proving the identity.