Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

2.5 Q-2

Question Statement

Differentiate the following with respect to the variables involved:

  1. x2sec⁑(4x)x^{2} \sec(4x)
  2. tan⁑2(θ)sec⁑2(θ)\tan^2(\theta) \sec^2(\theta)
  3. (sin⁑2ΞΈβˆ’cos⁑3ΞΈ)2(\sin 2\theta - \cos 3\theta)^{2}
  4. cos⁑(x)+sin⁑(x)\cos(\sqrt{x}) + \sqrt{\sin(x)}

Background and Explanation

To differentiate these functions, you’ll need to apply rules such as the product rule, chain rule, and standard derivatives of trigonometric functions. Make sure to keep in mind how each function interacts with its variable, especially with composite functions.


Solution

i. x2sec⁑(4x)x^{2} \sec(4x)

Let y=x2sec⁑(4x)y = x^{2} \sec(4x).

To differentiate this, we apply the product rule:

ddx[x2sec⁑(4x)]=x2ddx[sec⁑(4x)]+sec⁑(4x)ddx[x2]\frac{d}{dx}[x^{2} \sec(4x)] = x^{2} \frac{d}{dx}[\sec(4x)] + \sec(4x) \frac{d}{dx}[x^{2}]
  • Differentiate sec⁑(4x)\sec(4x) using the chain rule:
ddx[sec⁑(4x)]=sec⁑(4x)tan⁑(4x)Γ—4\frac{d}{dx}[\sec(4x)] = \sec(4x) \tan(4x) \times 4
  • Differentiate x2x^{2}:
ddx[x2]=2x\frac{d}{dx}[x^{2}] = 2x

Substituting these into the equation:

ddx[x2sec⁑(4x)]=x2β‹…4sec⁑(4x)tan⁑(4x)+sec⁑(4x)β‹…2x\frac{d}{dx}[x^{2} \sec(4x)] = x^{2} \cdot 4 \sec(4x) \tan(4x) + \sec(4x) \cdot 2x

Thus, the derivative is:

2xsec⁑(4x)[2xtan⁑(4x)+1]\boxed{2x \sec(4x) [2x \tan(4x) + 1]}

ii. tan⁑2(θ)sec⁑2(\thetae)\tan^2(\theta) \sec^2(\thetae)

Differentiate with respect to ΞΈ\theta:

We apply the product rule:

ddβˆ…[tan⁑2(βˆ…)sec⁑2(βˆ…)]=sec⁑2(βˆ…)ddβˆ…[tan⁑2(βˆ…)]+tan⁑2(βˆ…)ddβˆ…[sec⁑2(βˆ…)]\frac{d}{d\emptyset}[\tan^2(\emptyset) \sec^2(\emptyset)] = \sec^2(\emptyset) \frac{d}{d\emptyset}[\tan^2(\emptyset)] + \tan^2(\emptyset) \frac{d}{d\emptyset}[\sec^2(\emptyset)]
  • The derivative of tan⁑2(ΞΈ)\tan^2(\theta) is:
ddβˆ…[tan⁑2(βˆ…)]=2tan⁑(βˆ…)sec⁑2(βˆ…)\frac{d}{d\emptyset}[\tan^2(\emptyset)] = 2 \tan(\emptyset) \sec^2(\emptyset)
  • The derivative of sec⁑2(ΞΈ)\sec^2(\theta) is:
ddβˆ…[sec⁑2(βˆ…)]=2sec⁑(βˆ…)sec⁑(βˆ…)tan⁑(βˆ…)\frac{d}{d\emptyset}[\sec^2(\emptyset)] = 2 \sec(\emptyset) \sec(\emptyset) \tan(\emptyset)

Now substitute into the product rule:

ddβˆ…[tan⁑2(βˆ…)sec⁑2(βˆ…)]=sec⁑2(βˆ…)[2tan⁑(βˆ…)sec⁑2(βˆ…)]+tan⁑2(βˆ…)[2sec⁑2(βˆ…)tan⁑(βˆ…)]\frac{d}{d\emptyset}[\tan^2(\emptyset) \sec^2(\emptyset)] = \sec^2(\emptyset) [2 \tan(\emptyset) \sec^2(\emptyset)] + \tan^2(\emptyset) [2 \sec^2(\emptyset) \tan(\emptyset)]

Simplifying:

3tan⁑2(βˆ…)sec⁑4(βˆ…)+2sec⁑2(βˆ…)tan⁑4(βˆ…)\boxed{3 \tan^2(\emptyset) \sec^4(\emptyset) + 2 \sec^2(\emptyset) \tan^4(\emptyset)}

iii. (sin⁑2ΞΈβˆ’cos⁑3ΞΈ)2(\sin 2\theta - \cos 3\theta)^{2}

Let y=(sin⁑2ΞΈβˆ’cos⁑3ΞΈ)2y = (\sin 2\theta - \cos 3\theta)^2.

To differentiate, we apply the chain rule:

ddβˆ…[(sin⁑2βˆ…βˆ’cos⁑3βˆ…)2]=2(sin⁑2βˆ…βˆ’cos⁑3βˆ…)ddβˆ…[sin⁑2βˆ…βˆ’cos⁑3βˆ…]\frac{d}{d\emptyset} \left[(\sin 2\emptyset - \cos 3\emptyset)^2\right] = 2 (\sin 2\emptyset - \cos 3\emptyset) \frac{d}{d\emptyset} [\sin 2\emptyset - \cos 3\emptyset]

Now differentiate the inner expression sin⁑2βˆ…βˆ’cos⁑3βˆ…\sin 2\emptyset - \cos 3\emptyset:

ddβˆ…[sin⁑2βˆ…βˆ’cos⁑3βˆ…]=2cos⁑2βˆ…+3sin⁑3βˆ…\frac{d}{d\emptyset} [\sin 2\emptyset - \cos 3\emptyset] = 2 \cos 2\emptyset + 3 \sin 3\emptyset

Substituting everything back:

2(sin⁑2βˆ…βˆ’cos⁑3βˆ…)[2cos⁑2βˆ…+3sin⁑3βˆ…]\boxed{2 (\sin 2\emptyset - \cos 3\emptyset) [2 \cos 2\emptyset + 3 \sin 3\emptyset]}

iv. cos⁑(x)+sin⁑(x)\cos(\sqrt{x}) + \sqrt{\sin(x)}

Let y=cos⁑(x)+sin⁑(x)y = \cos(\sqrt{x}) + \sqrt{\sin(x)}.

Differentiate each term:

  1. For cos⁑(x)\cos(\sqrt{x}), we apply the chain rule:
ddx[cos⁑(x)]=βˆ’sin⁑(x)β‹…12x\frac{d}{dx}[\cos(\sqrt{x})] = -\sin(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}}
  1. For sin⁑(x)\sqrt{\sin(x)}, again using the chain rule:
ddx[sin⁑(x)]=12sin⁑(x)β‹…cos⁑(x)\frac{d}{dx}[\sqrt{\sin(x)}] = \frac{1}{2\sqrt{\sin(x)}} \cdot \cos(x)

Now, combine the results:

ddx[cos⁑(x)+sin⁑(x)]=βˆ’sin⁑(x)2x+cos⁑(x)2sin⁑(x)\frac{d}{dx}[\cos(\sqrt{x}) + \sqrt{\sin(x)}] = -\frac{\sin(\sqrt{x})}{2\sqrt{x}} + \frac{\cos(x)}{2\sqrt{\sin(x)}}

Thus, the derivative is:

12(sin⁑(x)x+cos⁑(x)sin⁑(x))\boxed{\frac{1}{2} \left(\frac{\sin(\sqrt{x})}{\sqrt{x}} + \frac{\cos(x)}{\sqrt{\sin(x)}}\right)}

Key Formulas or Methods Used

  1. Product Rule: ddx[u(x)v(x)]=uβ€²(x)v(x)+u(x)vβ€²(x)\frac{d}{dx}[u(x)v(x)] = u'(x)v(x) + u(x)v'(x)
  2. Chain Rule: ddx[f(g(x))]=fβ€²(g(x))β‹…gβ€²(x)\frac{d}{dx}[f(g(x))] = f'(g(x)) \cdot g'(x)
  3. Standard derivatives of trigonometric functions:
    • ddx[sec⁑x]=sec⁑xtan⁑x\frac{d}{dx}[\sec x] = \sec x \tan x
    • ddx[tan⁑x]=sec⁑2x\frac{d}{dx}[\tan x] = \sec^2 x
    • ddx[sin⁑x]=cos⁑x\frac{d}{dx}[\sin x] = \cos x
    • ddx[cos⁑x]=βˆ’sin⁑x\frac{d}{dx}[\cos x] = -\sin x

Summary of Steps

  1. For x2sec⁑(4x)x^{2} \sec(4x):

    • Apply product rule and chain rule.
    • Differentiate each part and combine the results.
  2. For tan⁑2(βˆ…)sec⁑2(βˆ…)\tan^2(\emptyset) \sec^2(\emptyset):

    • Apply product rule.
    • Differentiate tan⁑2(βˆ…)\tan^2(\emptyset) and sec⁑2(βˆ…)\sec^2(\emptyset) using standard derivatives.
  3. For (sin⁑2βˆ…βˆ’cos⁑3βˆ…)2(\sin 2\emptyset - \cos 3\emptyset)^{2}:

    • Use chain rule.
    • Differentiate the inner expression and apply the result to the outer square.
  4. For cos⁑(x)+sin⁑(x)\cos(\sqrt{x}) + \sqrt{\sin(x)}:

    • Use chain rule to differentiate each term.
    • Combine the results for the final derivative.