Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

2.5 Q-3

Question Statement

We are asked to find dydx\frac{d y}{d x} for the following two equations:

  1. y=xcos⁑yy = x \cos y
  2. x=ysin⁑yx = y \sin y

Background and Explanation

To solve these problems, we will use the implicit differentiation technique, as the equations involve both xx and yy. Implicit differentiation allows us to differentiate both sides of the equation with respect to xx, even when yy is a function of xx. We will differentiate the terms involving yy as if yy is a function of xx (using the chain rule).


Solution

i. Differentiating y=xcos⁑yy = x \cos y

  1. Start by differentiating both sides of the equation with respect to xx. ddx(y)=ddx(xcos⁑y)\frac{d}{d x} (y) = \frac{d}{d x} (x \cos y)

  2. On the left-hand side, differentiate yy to get dydx\frac{d y}{d x}.

    On the right-hand side, we apply the product rule: ddx[xcos⁑y]=xddx(cos⁑y)+cos⁑yddx(x)\frac{d}{d x} [x \cos y] = x \frac{d}{d x} (\cos y) + \cos y \frac{d}{d x} (x)

  3. Differentiating cos⁑y\cos y with respect to xx involves using the chain rule: ddx(cos⁑y)=βˆ’sin⁑yβ‹…dydx\frac{d}{d x} (\cos y) = -\sin y \cdot \frac{d y}{d x}

  4. Differentiating xx with respect to xx gives 11.

    Substituting these into the equation: dydx=x[βˆ’sin⁑yβ‹…dydx]+cos⁑y\frac{d y}{d x} = x \left[ -\sin y \cdot \frac{d y}{d x} \right] + \cos y

  5. Rearranging the terms: dydx+xsin⁑yβ‹…dydx=cos⁑y\frac{d y}{d x} + x \sin y \cdot \frac{d y}{d x} = \cos y

  6. Factor out dydx\frac{d y}{d x}: (1+xsin⁑y)dydx=cos⁑y(1 + x \sin y) \frac{d y}{d x} = \cos y

  7. Solving for dydx\frac{d y}{d x}: dydx=cos⁑y1+xsin⁑y\frac{d y}{d x} = \frac{\cos y}{1 + x \sin y}

Thus, the solution for the first part is: dydx=cos⁑y1+xsin⁑y\boxed{\frac{d y}{d x} = \frac{\cos y}{1 + x \sin y}}


ii. Differentiating x=ysin⁑yx = y \sin y

  1. Start by differentiating both sides of the equation with respect to xx. ddx(x)=ddx(ysin⁑y)\frac{d}{d x} (x) = \frac{d}{d x} (y \sin y)

  2. The left-hand side is straightforward since the derivative of xx with respect to xx is 11.

  3. On the right-hand side, apply the product rule to differentiate ysin⁑yy \sin y: ddx[ysin⁑y]=yddx(sin⁑y)+sin⁑ydydx\frac{d}{d x} [y \sin y] = y \frac{d}{d x} (\sin y) + \sin y \frac{d y}{d x}

  4. Differentiating sin⁑y\sin y with respect to xx gives: ddx(sin⁑y)=cos⁑yβ‹…dydx\frac{d}{d x} (\sin y) = \cos y \cdot \frac{d y}{d x}

  5. Substituting this back: 1=ycos⁑yβ‹…dydx+sin⁑yβ‹…dydx1 = y \cos y \cdot \frac{d y}{d x} + \sin y \cdot \frac{d y}{d x}

  6. Factor out dydx\frac{d y}{d x}: 1=(ycos⁑y+sin⁑y)β‹…dydx1 = (y \cos y + \sin y) \cdot \frac{d y}{d x}

  7. Solving for dydx\frac{d y}{d x}: dydx=1ycos⁑y+sin⁑y\frac{d y}{d x} = \frac{1}{y \cos y + \sin y}

Thus, the solution for the second part is: dydx=1ycos⁑y+sin⁑y\boxed{\frac{d y}{d x} = \frac{1}{y \cos y + \sin y}}


Key Formulas or Methods Used

  • Product Rule: ddx(uβ‹…v)=uβ€²v+uvβ€²\frac{d}{d x} (u \cdot v) = u' v + u v'

  • Chain Rule: ddx[f(g(x))]=fβ€²(g(x))β‹…gβ€²(x)\frac{d}{d x} [f(g(x))] = f'(g(x)) \cdot g'(x)

  • Implicit Differentiation: Differentiating both sides of an equation with respect to xx, where yy is implicitly a function of xx.


Summary of Steps

  1. For y=xcos⁑yy = x \cos y:

    • Apply implicit differentiation.
    • Use the product rule on xcos⁑yx \cos y.
    • Rearrange and solve for dydx\frac{d y}{d x}.
    • Result: dydx=cos⁑y1+xsin⁑y\frac{d y}{d x} = \frac{\cos y}{1 + x \sin y}.
  2. For x=ysin⁑yx = y \sin y:

    • Apply implicit differentiation.
    • Use the product rule on ysin⁑yy \sin y.
    • Rearrange and solve for dydx\frac{d y}{d x}.
    • Result: dydx=1ycos⁑y+sin⁑y\frac{d y}{d x} = \frac{1}{y \cos y + \sin y}.