Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

2.5 Q-4

Question Statement

Find the derivative with respect to xx for the following expressions:

  1. y=1+x1+2xy = \sqrt{\frac{1+x}{1+2x}}
  2. y=sin⁑(1+2x1+x)y = \sin \left( \sqrt{\frac{1+2x}{1+x}} \right)

Background and Explanation

To solve these problems, we will apply the chain rule and quotient rule for differentiation. The chain rule is used when differentiating composite functions, and the quotient rule is applied when differentiating a ratio of two functions.


Solution

i. Differentiating y=1+x1+2xy = \sqrt{\frac{1+x}{1+2x}}

First, we express the square root as a fractional power:

y=(1+x1+2x)1/2y = \left( \frac{1+x}{1+2x} \right)^{1/2}

Now, we differentiate using the chain rule and the quotient rule. Let u=1+x1+2xu = \frac{1+x}{1+2x}, so that:

y=u1/2y = u^{1/2}

Differentiating with respect to xx:

dydx=12uβˆ’1/2β‹…dudx\frac{d y}{d x} = \frac{1}{2} u^{-1/2} \cdot \frac{d u}{d x}

Next, we find dudx\frac{d u}{d x} using the quotient rule. For u=1+x1+2xu = \frac{1+x}{1+2x}, apply the quotient rule:

dudx=(1+2x)β‹…ddx(1+x)βˆ’(1+x)β‹…ddx(1+2x)(1+2x)2\frac{d u}{d x} = \frac{(1+2x) \cdot \frac{d}{d x}(1+x) - (1+x) \cdot \frac{d}{d x}(1+2x)}{(1+2x)^2}

Simplifying:

dudx=1(1+2x)βˆ’1(1+x)(1+2x)2=1+2xβˆ’1βˆ’x(1+2x)2=x(1+2x)2\frac{d u}{d x} = \frac{1(1+2x) - 1(1+x)}{(1+2x)^2} = \frac{1 + 2x - 1 - x}{(1+2x)^2} = \frac{x}{(1+2x)^2}

Substitute dudx\frac{d u}{d x} back into the expression for dydx\frac{d y}{d x}:

dydx=12(1+x1+2x)βˆ’1/2β‹…x(1+2x)2\frac{d y}{d x} = \frac{1}{2} \left( \frac{1+x}{1+2x} \right)^{-1/2} \cdot \frac{x}{(1+2x)^2}

Simplifying further:

dydx=x2(1+x)(1+2x)3Ans\frac{d y}{d x} = \frac{x}{2 \sqrt{(1+x)(1+2x)^3}} \quad \text{Ans}

ii. Differentiating y=sin⁑(1+2x1+x)y = \sin \left( \sqrt{\frac{1+2x}{1+x}} \right)

We begin by applying the chain rule. Let:

u=1+2x1+xu = \sqrt{\frac{1+2x}{1+x}}

Thus, y=sin⁑(u)y = \sin(u), and we differentiate:

dydx=cos⁑(u)β‹…dudx\frac{d y}{d x} = \cos(u) \cdot \frac{d u}{d x}

Now, differentiate u=1+2x1+xu = \sqrt{\frac{1+2x}{1+x}}. This is another composite function, so we use the chain rule again:

dudx=12(1+2x1+x)βˆ’1/2β‹…ddx(1+2x1+x)\frac{d u}{d x} = \frac{1}{2} \left( \frac{1+2x}{1+x} \right)^{-1/2} \cdot \frac{d}{d x} \left( \frac{1+2x}{1+x} \right)

Use the quotient rule to differentiate 1+2x1+x\frac{1+2x}{1+x}:

ddx(1+2x1+x)=(1+x)β‹…2βˆ’(1+2x)β‹…1(1+x)2=2+2xβˆ’1βˆ’2x(1+x)2=1(1+x)2\frac{d}{d x} \left( \frac{1+2x}{1+x} \right) = \frac{(1+x) \cdot 2 - (1+2x) \cdot 1}{(1+x)^2} = \frac{2 + 2x - 1 - 2x}{(1+x)^2} = \frac{1}{(1+x)^2}

Now substitute this into the expression for dudx\frac{d u}{d x}:

dudx=121+2x1+xβ‹…1(1+x)2\frac{d u}{d x} = \frac{1}{2 \sqrt{\frac{1+2x}{1+x}}} \cdot \frac{1}{(1+x)^2}

Finally, substitute this into the derivative of yy:

dydx=cos⁑(1+2x1+x)β‹…121+2x1+x(1+x)3\frac{d y}{d x} = \cos \left( \sqrt{\frac{1+2x}{1+x}} \right) \cdot \frac{1}{2 \sqrt{\frac{1+2x}{1+x}} (1+x)^3}

Simplifying:

dydx=cos⁑(1+2x1+x)21+2x1+x(1+x)3/2Ans\frac{d y}{d x} = \frac{\cos \left( \sqrt{\frac{1+2x}{1+x}} \right)}{2 \sqrt{\frac{1+2x}{1+x}} (1+x)^{3/2}} \quad \text{Ans}

Key Formulas or Methods Used

  • Chain Rule: Used when differentiating composite functions. If y=f(g(x))y = f(g(x)), then dydx=fβ€²(g(x))β‹…gβ€²(x)\frac{dy}{dx} = f'(g(x)) \cdot g'(x).
  • Quotient Rule: Used when differentiating ratios of functions. If u(x)=f(x)g(x)u(x) = \frac{f(x)}{g(x)}, then dudx=g(x)fβ€²(x)βˆ’f(x)gβ€²(x)(g(x))2\frac{du}{dx} = \frac{g(x) f'(x) - f(x) g'(x)}{(g(x))^2}.

Summary of Steps

  1. For part i:

    • Express y=(1+x1+2x)1/2y = \left( \frac{1+x}{1+2x} \right)^{1/2}.
    • Apply the chain rule and quotient rule to find dydx\frac{d y}{d x}.
    • Simplify the result to get dydx=x2(1+x)(1+2x)3\frac{d y}{d x} = \frac{x}{2 \sqrt{(1+x)(1+2x)^3}}.
  2. For part ii:

    • Express y=sin⁑(1+2x1+x)y = \sin \left( \sqrt{\frac{1+2x}{1+x}} \right).
    • Apply the chain rule and quotient rule to find dydx\frac{d y}{d x}.
    • Simplify the result to get dydx=cos⁑(1+2x1+x)21+2x1+x(1+x)3/2\frac{d y}{d x} = \frac{\cos \left( \sqrt{\frac{1+2x}{1+x}} \right)}{2 \sqrt{\frac{1+2x}{1+x}} (1+x)^{3/2}}.