Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

2.5 Q-5

Question Statement

Differentiate the following expressions with respect to the specified variables:

i. Differentiate sin⁑x\sin x with respect to cot⁑x\cot x.

ii. Differentiate sin⁑2x\sin^2 x with respect to cos⁑4x\cos^4 x.


Background and Explanation

In this problem, we are asked to find the derivatives of trigonometric functions with respect to other trigonometric functions. To solve these problems, we will use:

  • Basic Derivatives: The derivative of sin⁑x\sin x is cos⁑x\cos x and the derivative of cot⁑x\cot x is βˆ’csc⁑2x-\csc^2 x.
  • Chain Rule: When differentiating a composite function, we apply the chain rule, which states: ddx(f(g(x)))=fβ€²(g(x))β‹…gβ€²(x)\frac{d}{dx}(f(g(x))) = f'(g(x)) \cdot g'(x)

The chain rule allows us to differentiate functions like sin⁑x\sin x with respect to cot⁑x\cot x, or sin⁑2x\sin^2 x with respect to cos⁑4x\cos^4 x.


Solution

i. Differentiate sin⁑x\sin x with respect to cot⁑x\cot x

We are given the function sin⁑x\sin x and asked to differentiate it with respect to cot⁑x\cot x. We will apply the chain rule to solve this.

  1. Define the functions:

    • Let y=sin⁑xy = \sin x.
    • Let u=cot⁑xu = \cot x.
  2. Apply the chain rule: dydx=cos⁑x\frac{d y}{d x} = \cos x (The derivative of sin⁑x\sin x is cos⁑x\cos x). dudx=βˆ’csc⁑2x\frac{d u}{d x} = -\csc^2 x (The derivative of cot⁑x\cot x is βˆ’csc⁑2x-\csc^2 x).

  3. Now, to differentiate yy with respect to uu, we use the chain rule: dydu=dydxβ‹…dxdu\frac{d y}{d u} = \frac{d y}{d x} \cdot \frac{d x}{d u}

    Using the formula from the chain rule: dxdu=1csc⁑2x=sin⁑2x\frac{d x}{d u} = \frac{1}{\csc^2 x} = \sin^2 x

  4. Finally, substitute back into the chain rule: dydu=cos⁑xβ‹…(βˆ’sin⁑2x)\frac{d y}{d u} = \cos x \cdot (-\sin^2 x)

    This simplifies to: dydu=βˆ’cos⁑xsin⁑2x\frac{d y}{d u} = -\cos x \sin^2 x

    Answer: βˆ’cos⁑xsin⁑2x\boxed{-\cos x \sin^2 x}


ii. Differentiate sin⁑2x\sin^2 x with respect to cos⁑4x\cos^4 x

We are now asked to differentiate sin⁑2x\sin^2 x with respect to cos⁑4x\cos^4 x. Again, we will use the chain rule.

  1. Define the functions:

    • Let y=sin⁑2xy = \sin^2 x.
    • Let u=cos⁑4xu = \cos^4 x.
  2. Differentiate sin⁑2x\sin^2 x: dydx=2sin⁑xβ‹…cos⁑x\frac{d y}{d x} = 2 \sin x \cdot \cos x (Using the chain rule for sin⁑2x\sin^2 x).

  3. Differentiate cos⁑4x\cos^4 x: dudx=4cos⁑3xβ‹…(βˆ’sin⁑x)\frac{d u}{d x} = 4 \cos^3 x \cdot (-\sin x) (Using the chain rule for cos⁑4x\cos^4 x).

  4. Now, apply the chain rule: dydu=dydxβ‹…dxdu\frac{d y}{d u} = \frac{d y}{d x} \cdot \frac{d x}{d u}

    Substituting the expressions for dydx\frac{d y}{d x} and dudx\frac{d u}{d x}: dydu=2sin⁑xβ‹…cos⁑xβ‹…14cos⁑3xβ‹…sin⁑x\frac{d y}{d u} = 2 \sin x \cdot \cos x \cdot \frac{1}{4 \cos^3 x \cdot \sin x}

  5. Simplify the expression: dydu=βˆ’12cos⁑2x\frac{d y}{d u} = \frac{-1}{2 \cos^2 x}

    Answer: βˆ’12cos⁑2x\boxed{-\frac{1}{2 \cos^2 x}}


Key Formulas or Methods Used

  • Basic Derivatives:
    • ddx(sin⁑x)=cos⁑x\frac{d}{dx} (\sin x) = \cos x
    • ddx(cot⁑x)=βˆ’csc⁑2x\frac{d}{dx} (\cot x) = -\csc^2 x
    • ddx(cos⁑4x)=4cos⁑3x(βˆ’sin⁑x)\frac{d}{dx} (\cos^4 x) = 4 \cos^3 x (-\sin x)
  • Chain Rule: ddx(f(g(x)))=fβ€²(g(x))β‹…gβ€²(x)\frac{d}{dx}(f(g(x))) = f'(g(x)) \cdot g'(x)

Summary of Steps

  1. i. Differentiate sin⁑x\sin x with respect to cot⁑x\cot x:

    • Find dydx\frac{d y}{d x} and dudx\frac{d u}{d x}.
    • Apply the chain rule to get dydu=βˆ’cos⁑xsin⁑2x\frac{d y}{d u} = -\cos x \sin^2 x.
  2. ii. Differentiate sin⁑2x\sin^2 x with respect to cos⁑4x\cos^4 x:

    • Find dydx\frac{d y}{d x} and dudx\frac{d u}{d x}.
    • Apply the chain rule to get dydu=βˆ’12cos⁑2x\frac{d y}{d u} = -\frac{1}{2 \cos^2 x}.