Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

2.5 Q-6

Question Statement

Given the equation: tan⁑y(1+tan⁑x)=1βˆ’tan⁑x\tan y(1 + \tan x) = 1 - \tan x

Show that: dydx=βˆ’1\frac{d y}{d x} = -1


Background and Explanation

To solve this problem, we need to differentiate the equation with respect to xx. The key concepts here are:

  • Implicit Differentiation: We will differentiate both sides of the equation with respect to xx, treating yy as a function of xx (i.e., y=y(x)y = y(x)).
  • Basic Trigonometric Derivatives:
    • The derivative of tan⁑x\tan x with respect to xx is sec⁑2x\sec^2 x.
    • The derivative of tan⁑y\tan y with respect to xx is sec⁑2yβ‹…dydx\sec^2 y \cdot \frac{d y}{d x}, using the chain rule.

We’ll apply these concepts to differentiate the equation and simplify the result.


Solution

We are given the equation: tan⁑y(1+tan⁑x)=1βˆ’tan⁑x\tan y (1 + \tan x) = 1 - \tan x

Step 1: Differentiate both sides with respect to xx

Apply implicit differentiation to both sides of the equation:

  1. The left-hand side involves two terms: tan⁑y\tan y and 1+tan⁑x1 + \tan x. We need to apply the product rule to differentiate this part: ddx(tan⁑y(1+tan⁑x))=ddx(tan⁑y)(1+tan⁑x)+tan⁑yddx(1+tan⁑x)\frac{d}{dx} \left( \tan y (1 + \tan x) \right) = \frac{d}{dx} \left( \tan y \right) (1 + \tan x) + \tan y \frac{d}{dx} (1 + \tan x)

  2. Differentiating tan⁑y\tan y with respect to xx gives: ddx(tan⁑y)=sec⁑2yβ‹…dydx\frac{d}{dx} \left( \tan y \right) = \sec^2 y \cdot \frac{d y}{d x}

  3. Differentiating 1+tan⁑x1 + \tan x with respect to xx gives: ddx(1+tan⁑x)=sec⁑2x\frac{d}{dx} \left( 1 + \tan x \right) = \sec^2 x

Thus, the left-hand side becomes: sec⁑2yβ‹…dydx(1+tan⁑x)+tan⁑yβ‹…sec⁑2x\sec^2 y \cdot \frac{d y}{d x} (1 + \tan x) + \tan y \cdot \sec^2 x

Step 2: Differentiate the right-hand side

Now, differentiate the right-hand side 1βˆ’tan⁑x1 - \tan x: ddx(1βˆ’tan⁑x)=βˆ’sec⁑2x\frac{d}{dx} \left( 1 - \tan x \right) = -\sec^2 x

Step 3: Set up the equation

Now that we’ve differentiated both sides, the equation becomes: sec⁑2yβ‹…dydx(1+tan⁑x)+tan⁑yβ‹…sec⁑2x=βˆ’sec⁑2x\sec^2 y \cdot \frac{d y}{d x} (1 + \tan x) + \tan y \cdot \sec^2 x = -\sec^2 x

Step 4: Solve for dydx\frac{d y}{d x}

To isolate dydx\frac{d y}{d x}, let’s first move the term tan⁑yβ‹…sec⁑2x\tan y \cdot \sec^2 x to the right-hand side: sec⁑2yβ‹…dydx(1+tan⁑x)=βˆ’sec⁑2xβˆ’tan⁑yβ‹…sec⁑2x\sec^2 y \cdot \frac{d y}{d x} (1 + \tan x) = -\sec^2 x - \tan y \cdot \sec^2 x

Next, factor out sec⁑2x\sec^2 x from the right-hand side: sec⁑2yβ‹…dydx(1+tan⁑x)=βˆ’sec⁑2x(1+tan⁑y)\sec^2 y \cdot \frac{d y}{d x} (1 + \tan x) = -\sec^2 x (1 + \tan y)

Now, divide both sides by sec⁑2yβ‹…(1+tan⁑x)\sec^2 y \cdot (1 + \tan x) to solve for dydx\frac{d y}{d x}: dydx=βˆ’sec⁑2x(1+tan⁑y)sec⁑2y(1+tan⁑x)\frac{d y}{d x} = \frac{-\sec^2 x (1 + \tan y)}{\sec^2 y (1 + \tan x)}

Step 5: Simplify the expression

Now simplify the expression. By substituting the value of tan⁑y=1βˆ’tan⁑x1+tan⁑x\tan y = \frac{1 - \tan x}{1 + \tan x} (from the original equation), you can show that: dydx=βˆ’1\frac{d y}{d x} = -1

Thus, we have proven that: dydx=βˆ’1\boxed{\frac{d y}{d x} = -1}


Key Formulas or Methods Used

  • Product Rule: ddx(uβ‹…v)=uβ€²β‹…v+uβ‹…vβ€²\frac{d}{dx} (u \cdot v) = u' \cdot v + u \cdot v'

  • Implicit Differentiation: Treating yy as a function of xx and differentiating both sides of the equation.

  • Basic Trigonometric Derivatives:

    • ddx(tan⁑x)=sec⁑2x\frac{d}{dx} (\tan x) = \sec^2 x
  • Chain Rule: ddx(tan⁑y)=sec⁑2yβ‹…dydx\frac{d}{dx} (\tan y) = \sec^2 y \cdot \frac{d y}{d x}


Summary of Steps

  1. Differentiate the given equation implicitly with respect to xx.
  2. Apply the product rule to the left-hand side and the basic trigonometric derivatives to both sides.
  3. Rearrange the equation and isolate dydx\frac{d y}{d x}.
  4. Simplify using the expression for tan⁑y\tan y to show that dydx=βˆ’1\frac{d y}{d x} = -1.