Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

2.5 Q-9

Question Statement

We are given the following equations:

x=a(cos⁑t+sin⁑t)x = a(\cos t + \sin t) y=a(sin⁑tβˆ’tcos⁑t)y = a(\sin t - t \cos t)

We need to find:

dydx\frac{d y}{d x}

Background and Explanation

In this problem, we are asked to differentiate two expressions with respect to tt and then find dydx\frac{d y}{d x}, which requires applying the chain rule.

  • The chain rule states that dydx=dydtΓ—dtdx\frac{d y}{d x} = \frac{d y}{d t} \times \frac{d t}{d x}.
  • We’ll differentiate xx and yy with respect to tt and then apply the formula for dydx\frac{d y}{d x}.

Solution

Step 1: Differentiate x=a(cos⁑t+sin⁑t)x = a(\cos t + \sin t) with respect to tt

We are given:

x=a(cos⁑t+sin⁑t)x = a(\cos t + \sin t)

Differentiating with respect to tt:

dxdt=a(βˆ’sin⁑t+cos⁑t)\frac{d x}{d t} = a(-\sin t + \cos t)

Thus, the derivative of xx with respect to tt is:

dxdt=a(βˆ’sin⁑t+cos⁑t)\frac{d x}{d t} = a(-\sin t + \cos t)

Step 2: Differentiate y=a(sin⁑tβˆ’tcos⁑t)y = a(\sin t - t \cos t) with respect to tt

Next, we differentiate the expression for yy:

y=a(sin⁑tβˆ’tcos⁑t)y = a(\sin t - t \cos t)

Differentiating with respect to tt:

dydt=a[cos⁑tβˆ’(cos⁑tβˆ’tsin⁑t)]\frac{d y}{d t} = a[\cos t - (\cos t - t \sin t)]

Simplifying:

dydt=a[cos⁑tβˆ’cos⁑t+tsin⁑t]\frac{d y}{d t} = a[\cos t - \cos t + t \sin t] dydt=atsin⁑t\frac{d y}{d t} = a t \sin t

Step 3: Apply the chain rule to find dydx\frac{d y}{d x}

Now we can apply the chain rule:

dydx=dydtΓ—dtdx\frac{d y}{d x} = \frac{d y}{d t} \times \frac{d t}{d x}

We already know:

dydt=atsin⁑t\frac{d y}{d t} = a t \sin t dxdt=a(βˆ’sin⁑t+cos⁑t)\frac{d x}{d t} = a(-\sin t + \cos t)

Thus, dtdx\frac{d t}{d x} is the reciprocal of dxdt\frac{d x}{d t}:

dtdx=1a(cos⁑tβˆ’sin⁑t)\frac{d t}{d x} = \frac{1}{a(\cos t - \sin t)}

Now, substitute the values into the chain rule formula:

dydx=atsin⁑tΓ—1a(cos⁑tβˆ’sin⁑t)\frac{d y}{d x} = a t \sin t \times \frac{1}{a(\cos t - \sin t)}

Simplifying:

dydx=tsin⁑tcos⁑tβˆ’sin⁑t\frac{d y}{d x} = \frac{t \sin t}{\cos t - \sin t}

Step 4: Final Expression

Thus, we have:

dydx=tsin⁑tcos⁑tβˆ’sin⁑t\frac{d y}{d x} = \frac{t \sin t}{\cos t - \sin t}

Key Formulas or Methods Used

  • Chain Rule: Used to relate the derivatives of xx and yy with respect to tt and then express dydx\frac{d y}{d x}.
dydx=dydtΓ—dtdx \frac{d y}{d x} = \frac{d y}{d t} \times \frac{d t}{d x}
  • Differentiation:
    • ddt(sin⁑t)=cos⁑t\frac{d}{d t}(\sin t) = \cos t
    • ddt(tcos⁑t)=cos⁑tβˆ’tsin⁑t\frac{d}{d t}(t \cos t) = \cos t - t \sin t

Summary of Steps

  1. Differentiate x=a(cos⁑t+sin⁑t)x = a(\cos t + \sin t) to find dxdt\frac{d x}{d t}.
  2. Differentiate y=a(sin⁑tβˆ’tcos⁑t)y = a(\sin t - t \cos t) to find dydt\frac{d y}{d t}.
  3. Apply the chain rule to find dydx\frac{d y}{d x}.
  4. Simplify the expression for dydx\frac{d y}{d x} to obtain the final result.