Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

2.6 Q-1

Question Statement

Find the derivatives of the following functions with respect to xx:

  1. f(x)=exβˆ’1f(x) = e^{\sqrt{x} - 1}
  2. f(x)=x3e1xf(x) = x^3 e^{\frac{1}{x}}
  3. f(x)=ex(1+ln⁑x)f(x) = e^x (1 + \ln x)
  4. f(x)=exex+1f(x) = \frac{e^x}{e^x + 1}
  5. f(x)=ln⁑(ex+eβˆ’x)f(x) = \ln \left(e^x + e^{-x}\right)
  6. f(x)=eaxβˆ’eβˆ’axeax+eβˆ’axf(x) = \frac{e^{a x} - e^{-a x}}{e^{a x} + e^{-a x}}
  7. f(x)=ln⁑(e2x+eβˆ’2x)f(x) = \sqrt{\ln \left(e^{2 x} + e^{-2 x}\right)}
  8. f(x)=ln⁑(e2x+eβˆ’2x)f(x) = \ln \left(\sqrt{e^{2 x} + e^{-2 x}}\right)

Background and Explanation

To solve these derivatives, we need to use the following concepts:

  • Chain Rule: For composite functions, the chain rule is essential. It states that for f(x)=g(h(x))f(x) = g(h(x)), the derivative is fβ€²(x)=gβ€²(h(x))β‹…hβ€²(x)f'(x) = g'(h(x)) \cdot h'(x).
  • Product Rule: For functions that are products of two functions, such as f(x)=g(x)β‹…h(x)f(x) = g(x) \cdot h(x), the derivative is fβ€²(x)=gβ€²(x)β‹…h(x)+g(x)β‹…hβ€²(x)f'(x) = g'(x) \cdot h(x) + g(x) \cdot h'(x).
  • Quotient Rule: For functions in the form f(x)=g(x)h(x)f(x) = \frac{g(x)}{h(x)}, the derivative is fβ€²(x)=gβ€²(x)β‹…h(x)βˆ’g(x)β‹…hβ€²(x)h(x)2f'(x) = \frac{g'(x) \cdot h(x) - g(x) \cdot h'(x)}{h(x)^2}.
  • Logarithmic Differentiation: When dealing with logarithms, use the chain rule and properties of logarithms.

Solution

i. f(x)=exβˆ’1f(x) = e^{\sqrt{x} - 1}

Apply the chain rule:

fβ€²(x)=exβˆ’1β‹…ddx(xβˆ’1)f'(x) = e^{\sqrt{x} - 1} \cdot \frac{d}{dx}(\sqrt{x} - 1) =exβˆ’1β‹…12x= e^{\sqrt{x} - 1} \cdot \frac{1}{2\sqrt{x}}

Thus, the derivative is:

fβ€²(x)=12xexβˆ’1f'(x) = \frac{1}{2\sqrt{x}} e^{\sqrt{x} - 1}

ii. f(x)=x3e1xf(x) = x^3 e^{\frac{1}{x}}

Use the product rule:

fβ€²(x)=e1xβ‹…3x2+x3β‹…e1xβ‹…(βˆ’1x2)f'(x) = e^{\frac{1}{x}} \cdot 3x^2 + x^3 \cdot e^{\frac{1}{x}} \cdot \left(-\frac{1}{x^2}\right)

Simplify:

fβ€²(x)=3x2e1xβˆ’xe1xf'(x) = 3x^2 e^{\frac{1}{x}} - x e^{\frac{1}{x}} fβ€²(x)=xe1x(3xβˆ’1)f'(x) = x e^{\frac{1}{x}} \left( 3x - 1 \right)

iii. f(x)=ex(1+ln⁑x)f(x) = e^x (1 + \ln x)

Apply the product rule:

fβ€²(x)=(1+ln⁑x)β‹…ex+exβ‹…1xf'(x) = (1 + \ln x) \cdot e^x + e^x \cdot \frac{1}{x}

Simplify:

fβ€²(x)=ex(1+ln⁑x+1x)f'(x) = e^x \left( 1 + \ln x + \frac{1}{x} \right)

Thus, the derivative is:

fβ€²(x)=(x(1+ln⁑x)+1)exxf'(x) = \frac{(x(1 + \ln x) + 1) e^x}{x}

iv. f(x)=exex+1f(x) = \frac{e^x}{e^x + 1}

Use the quotient rule:

fβ€²(x)=(ex+1)β‹…exβˆ’exβ‹…(ex)(ex+1)2f'(x) = \frac{\left( e^x + 1 \right) \cdot e^x - e^x \cdot \left( e^x \right)}{(e^x + 1)^2}

Simplify:

fβ€²(x)=ex+2(ex+1)2f'(x) = \frac{e^x + 2}{(e^x + 1)^2}

v. f(x)=ln⁑(ex+eβˆ’x)f(x) = \ln \left(e^x + e^{-x}\right)

Differentiate:

fβ€²(x)=1ex+eβˆ’xβ‹…(exβˆ’eβˆ’x)f'(x) = \frac{1}{e^x + e^{-x}} \cdot \left( e^x - e^{-x} \right)

Simplify:

fβ€²(x)=exβˆ’eβˆ’xex+eβˆ’xf'(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}

vi. f(x)=eaxβˆ’eβˆ’axeax+eβˆ’axf(x) = \frac{e^{a x} - e^{-a x}}{e^{a x} + e^{-a x}}

Differentiate using the quotient rule:

fβ€²(x)=(eax+eβˆ’ax)β‹…(aeax+aeβˆ’ax)βˆ’(eaxβˆ’eβˆ’ax)β‹…(aeax)(eax+eβˆ’ax)2f'(x) = \frac{\left( e^{a x} + e^{-a x} \right) \cdot \left( a e^{a x} + a e^{-a x} \right) - \left( e^{a x} - e^{-a x} \right) \cdot \left( a e^{a x} \right)}{\left( e^{a x} + e^{-a x} \right)^2}

Simplify:

fβ€²(x)=4a(eax+eβˆ’ax)2f'(x) = \frac{4a}{\left( e^{a x} + e^{-a x} \right)^2}

vii. f(x)=ln⁑(e2x+eβˆ’2x)f(x) = \sqrt{\ln \left(e^{2x} + e^{-2x}\right)}

Differentiate using the chain rule:

fβ€²(x)=12ln⁑(e2x+eβˆ’2x)β‹…1e2x+eβˆ’2xβ‹…(2e2xβˆ’2eβˆ’2x)f'(x) = \frac{1}{2 \sqrt{\ln \left(e^{2 x} + e^{-2 x}\right)}} \cdot \frac{1}{e^{2x} + e^{-2x}} \cdot \left( 2 e^{2x} - 2 e^{-2x} \right)

Simplify:

fβ€²(x)=e2xβˆ’eβˆ’2x(e2x+eβˆ’2x)ln⁑(e2x+eβˆ’2x)f'(x) = \frac{e^{2x} - e^{-2x}}{\left( e^{2x} + e^{-2x} \right) \sqrt{\ln \left(e^{2x} + e^{-2x}\right)}}

viii. f(x)=ln⁑(e2x+eβˆ’2x)f(x) = \ln \left( \sqrt{e^{2x} + e^{-2x}} \right)

Differentiate using the chain rule:

fβ€²(x)=1e2x+eβˆ’2xβ‹…12β‹…(2e2xβˆ’2eβˆ’2x)f'(x) = \frac{1}{\sqrt{e^{2 x} + e^{-2 x}}} \cdot \frac{1}{2} \cdot \left( 2 e^{2x} - 2 e^{-2x} \right)

Simplify:

fβ€²(x)=e2xβˆ’eβˆ’2xe2x+eβˆ’2xf'(x) = \frac{e^{2x} - e^{-2x}}{e^{2x} + e^{-2x}}

Thus, this is the hyperbolic tangent:

fβ€²(x)=tanh⁑(2x)f'(x) = \tanh(2x)

Key Formulas or Methods Used

  • Chain Rule: ddxeg(x)=eg(x)β‹…gβ€²(x)\frac{d}{dx} e^{g(x)} = e^{g(x)} \cdot g'(x)
  • Product Rule: ddx(g(x)β‹…h(x))=gβ€²(x)β‹…h(x)+g(x)β‹…hβ€²(x)\frac{d}{dx} \left( g(x) \cdot h(x) \right) = g'(x) \cdot h(x) + g(x) \cdot h'(x)
  • Quotient Rule: ddx(g(x)h(x))=gβ€²(x)β‹…h(x)βˆ’g(x)β‹…hβ€²(x)h(x)2\frac{d}{dx} \left( \frac{g(x)}{h(x)} \right) = \frac{g'(x) \cdot h(x) - g(x) \cdot h'(x)}{h(x)^2}
  • Logarithmic Differentiation: For ddxln⁑f(x)=fβ€²(x)f(x)\frac{d}{dx} \ln f(x) = \frac{f'(x)}{f(x)}

Summary of Steps

  1. For f(x)=exβˆ’1f(x) = e^{\sqrt{x}-1}, apply the chain rule to differentiate.
  2. For f(x)=x3e1xf(x) = x^3 e^{\frac{1}{x}}, use the product rule and simplify.
  3. For f(x)=ex(1+ln⁑x)f(x) = e^x (1 + \ln x), use the product rule and apply properties of logarithms.
  4. For f(x)=exex+1f(x) = \frac{e^x}{e^x + 1}, apply the quotient rule and simplify.
  5. For f(x)=ln⁑(ex+eβˆ’x)f(x) = \ln \left(e^x + e^{-x}\right), differentiate using basic differentiation rules.
  6. For f(x)=eaxβˆ’eβˆ’axeax+eβˆ’axf(x) = \frac{e^{a x} - e^{-a x}}{e^{a x} + e^{-a x}}, apply the quotient rule and simplify.
  7. For f(x)=ln⁑(e2x+eβˆ’2x)f(x) = \sqrt{\ln \left(e^{2x} + e^{-2x}\right)}, use the chain rule.
  8. For f(x)=ln⁑(e2x+eβˆ’2x)f(x) = \ln \left( \sqrt{e^{2x} + e^{-2x}} \right), differentiate using the chain rule and simplify.