Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

2.6 Q-2

Question Statement

Find fβ€²(x)f^{\prime}(\boldsymbol{x}) for the following functions:

i. f(x)=exβˆ’1f(x)=e^{\sqrt{x}-1}

ii. f(x)=x3e1xf(x)=x^{3} e^{\frac{1}{x}}

iii. f(x)=ex(1+ln⁑x)f(x)=e^{x}(1 + \ln x)

iv. f(x)=exex+1f(x) = \frac{e^x}{e^x + 1}

v. f(x)=ln⁑(ex+eβˆ’x)f(x) = \ln(e^x + e^{-x})

vi. f(x)=eaxβˆ’eβˆ’axeax+eβˆ’axf(x) = \frac{e^{ax} - e^{-ax}}{e^{ax} + e^{-ax}}

vii. f(x)=ln⁑(e2x+eβˆ’2x)f(x) = \sqrt{\ln(e^{2x} + e^{-2x})}

viii. f(x)=ln⁑(e2x+eβˆ’2x)f(x) = \ln\left(\sqrt{e^{2x} + e^{-2x}}\right)


Background and Explanation

To solve these derivative problems, we use the basic rules of differentiation, such as:

  1. The Chain Rule: For a composite function, the derivative is the derivative of the outer function times the derivative of the inner function.
  2. Product Rule: For the product of two functions, (fg)β€²=fβ€²g+fg(fg)' = f'g + fg.
  3. Quotient Rule: For the quotient of two functions, (f(x)g(x))β€²=fβ€²(x)g(x)βˆ’f(x)gβ€²(x)g(x)2\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}.
  4. Logarithmic Differentiation: Useful when taking the derivative of a function with logarithms.

Solution

i. f(x)=exβˆ’1f(x) = e^{\sqrt{x} - 1}

We need to differentiate exβˆ’1e^{\sqrt{x} - 1} with respect to xx. First, recognize the composition of functions: eue^{u} where u=xβˆ’1u = \sqrt{x} - 1.

Step 1: Apply the chain rule:

fβ€²(x)=exβˆ’1β‹…ddx(xβˆ’1)f'(x) = e^{\sqrt{x} - 1} \cdot \frac{d}{dx}(\sqrt{x} - 1)

Step 2: Differentiate xβˆ’1\sqrt{x} - 1:

ddx(xβˆ’1)=12x\frac{d}{dx}(\sqrt{x} - 1) = \frac{1}{2\sqrt{x}}

Step 3: Combine the results:

fβ€²(x)=exβˆ’1β‹…12x=12xexβˆ’1f'(x) = e^{\sqrt{x} - 1} \cdot \frac{1}{2\sqrt{x}} = \frac{1}{2\sqrt{x}} e^{\sqrt{x} - 1}

ii. f(x)=x3e1xf(x) = x^3 e^{\frac{1}{x}}

We apply the product rule because this is a product of two functions: x3x^3 and e1xe^{\frac{1}{x}}.

Step 1: Differentiate using the product rule:

fβ€²(x)=ddx(x3)β‹…e1x+x3β‹…ddx(e1x)f'(x) = \frac{d}{dx}(x^3) \cdot e^{\frac{1}{x}} + x^3 \cdot \frac{d}{dx}(e^{\frac{1}{x}})

Step 2: Differentiate x3x^3:

ddx(x3)=3x2\frac{d}{dx}(x^3) = 3x^2

Step 3: Differentiate e1xe^{\frac{1}{x}} using the chain rule:

ddx(e1x)=e1xβ‹…(βˆ’1x2)\frac{d}{dx}\left(e^{\frac{1}{x}}\right) = e^{\frac{1}{x}} \cdot \left(-\frac{1}{x^2}\right)

Step 4: Combine the results:

fβ€²(x)=3x2e1xβˆ’xe1x=xe1x(3xβˆ’1)f'(x) = 3x^2 e^{\frac{1}{x}} - x e^{\frac{1}{x}} = x e^{\frac{1}{x}} (3x - 1)

iii. f(x)=ex(1+ln⁑x)f(x) = e^x(1 + \ln x)

We apply the product rule again, as this is a product of two functions: exe^x and (1+ln⁑x)(1 + \ln x).

Step 1: Differentiate using the product rule:

fβ€²(x)=ex(1+ln⁑x)+exβ‹…1xf'(x) = e^x(1 + \ln x) + e^x \cdot \frac{1}{x}

Step 2: Simplify:

fβ€²(x)=ex(1+ln⁑x+1x)f'(x) = e^x \left(1 + \ln x + \frac{1}{x}\right)

iv. f(x)=exex+1f(x) = \frac{e^x}{e^x + 1}

We use the quotient rule for this function.

Step 1: Apply the quotient rule:

fβ€²(x)=(ex+1)β‹…ddx(ex)βˆ’exβ‹…ddx(ex+1)(ex+1)2f'(x) = \frac{(e^x + 1) \cdot \frac{d}{dx}(e^x) - e^x \cdot \frac{d}{dx}(e^x + 1)}{(e^x + 1)^2}

Step 2: Differentiate:

fβ€²(x)=(ex+1)β‹…exβˆ’exβ‹…ex(ex+1)2f'(x) = \frac{(e^x + 1) \cdot e^x - e^x \cdot e^x}{(e^x + 1)^2}

Step 3: Simplify:

fβ€²(x)=ex+ex(ex+1)2=ex(1+ex)(ex+1)2f'(x) = \frac{e^x + e^x}{(e^x + 1)^2} = \frac{e^x(1 + e^x)}{(e^x + 1)^2}

v. f(x)=ln⁑(ex+eβˆ’x)f(x) = \ln(e^x + e^{-x})

We apply the chain rule and logarithmic differentiation.

Step 1: Differentiate:

fβ€²(x)=1ex+eβˆ’xβ‹…ddx(ex+eβˆ’x)f'(x) = \frac{1}{e^x + e^{-x}} \cdot \frac{d}{dx}(e^x + e^{-x})

Step 2: Differentiate the terms inside the logarithm:

ddx(ex+eβˆ’x)=exβˆ’eβˆ’x\frac{d}{dx}(e^x + e^{-x}) = e^x - e^{-x}

Step 3: Combine the results:

fβ€²(x)=exβˆ’eβˆ’xex+eβˆ’xf'(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}

vi. f(x)=eaxβˆ’eβˆ’axeax+eβˆ’axf(x) = \frac{e^{ax} - e^{-ax}}{e^{ax} + e^{-ax}}

This is another function for which we will apply the quotient rule.

Step 1: Differentiate using the quotient rule:

fβ€²(x)=(eax+eβˆ’ax)β‹…ddx(eaxβˆ’eβˆ’ax)βˆ’(eaxβˆ’eβˆ’ax)β‹…ddx(eax+eβˆ’ax)(eax+eβˆ’ax)2f'(x) = \frac{(e^{ax} + e^{-ax}) \cdot \frac{d}{dx}(e^{ax} - e^{-ax}) - (e^{ax} - e^{-ax}) \cdot \frac{d}{dx}(e^{ax} + e^{-ax})}{(e^{ax} + e^{-ax})^2}

Step 2: Differentiate the terms:

fβ€²(x)=a(eax+eβˆ’ax)β‹…(eaxβˆ’eβˆ’ax)(eax+eβˆ’ax)2f'(x) = \frac{a(e^{ax} + e^{-ax}) \cdot (e^{ax} - e^{-ax})}{(e^{ax} + e^{-ax})^2}

Step 3: Simplify:

fβ€²(x)=4a(eax+eβˆ’ax)2f'(x) = \frac{4a}{(e^{ax} + e^{-ax})^2}

vii. f(x)=ln⁑(e2x+eβˆ’2x)f(x) = \sqrt{\ln(e^{2x} + e^{-2x})}

We use the chain rule for this function.

Step 1: Differentiate using the chain rule:

fβ€²(x)=12ln⁑(e2x+eβˆ’2x)β‹…ddx(e2x+eβˆ’2x)f'(x) = \frac{1}{2 \sqrt{\ln(e^{2x} + e^{-2x})}} \cdot \frac{d}{dx}(e^{2x} + e^{-2x})

Step 2: Differentiate the logarithm and the exponential terms:

fβ€²(x)=2(e2xβˆ’eβˆ’2x)(e2x+eβˆ’2x)β‹…ln⁑(e2x+eβˆ’2x)f'(x) = \frac{2(e^{2x} - e^{-2x})}{(e^{2x} + e^{-2x}) \cdot \sqrt{\ln(e^{2x} + e^{-2x})}}

viii. f(x)=ln⁑(e2x+eβˆ’2x)f(x) = \ln\left(\sqrt{e^{2x} + e^{-2x}}\right)

We differentiate this using logarithmic differentiation.

Step 1: Simplify the expression:

f(x)=12ln⁑(e2x+eβˆ’2x)f(x) = \frac{1}{2} \ln(e^{2x} + e^{-2x})

Step 2: Differentiate:

fβ€²(x)=12β‹…1e2x+eβˆ’2xβ‹…ddx(e2x+eβˆ’2x)f'(x) = \frac{1}{2} \cdot \frac{1}{e^{2x} + e^{-2x}} \cdot \frac{d}{dx}(e^{2x} + e^{-2x})

Step 3: Simplify:

fβ€²(x)=e2xβˆ’eβˆ’2xe2x+eβˆ’2xf'(x) = \frac{e^{2x} - e^{-2x}}{e^{2x} + e^{-2x}}

This is the hyperbolic tangent function:

fβ€²(x)=tanh⁑(2x)f'(x) = \tanh(2x)

Summary

  • We applied **basic differentiation rules

** like the Chain Rule, Product Rule, and Quotient Rule to solve the problems.

  • For composite functions, the Chain Rule was crucial.
  • The Product Rule was used in problems with multiplication of functions, and the Quotient Rule helped solve fractional expressions.
  • We simplified expressions, leveraging logarithmic properties where needed.