Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

2.6 Q-3

Question Statement

Find dydx\frac{d y}{d x} for the following functions:

  1. y=cosh⁑(2x)y = \cosh(2x)
  2. y=sinh⁑(3x)y = \sinh(3x)
  3. y=tanβ‘βˆ’1(sin⁑x)y = \tan^{-1}(\sin x)
  4. y=sinhβ‘βˆ’1(x3)y = \sinh^{-1}(x^3)
  5. y=ln⁑(tanh⁑x)y = \ln(\tanh x)
  6. y=sinhβ‘βˆ’1(x2)y = \sinh^{-1}\left(\frac{x}{2}\right)

Background and Explanation

To solve these problems, we need to apply basic differentiation rules such as:

  • Hyperbolic functions: Understand how to differentiate hyperbolic functions like cosh⁑x\cosh x, sinh⁑x\sinh x, and tanh⁑x\tanh x.
  • Inverse functions: Recognize that the derivatives of inverse hyperbolic functions like sinhβ‘βˆ’1(x)\sinh^{-1}(x) and tanhβ‘βˆ’1(x)\tanh^{-1}(x) involve a bit more manipulation.
  • Basic differentiation: Apply standard derivative formulas for sine, cosine, and other elementary functions.

Solution

1. y=cosh⁑(2x)y = \cosh(2x)

The derivative of cosh⁑(2x)\cosh(2x) is:

ddx(cosh⁑(2x))=2sinh⁑(2x)\frac{d}{dx}(\cosh(2x)) = 2\sinh(2x)

Explanation:

  • The chain rule is applied to differentiate the composition cosh⁑(2x)\cosh(2x).
  • The derivative of cosh⁑(u)\cosh(u) is sinh⁑(u)\sinh(u), and then multiply by the derivative of 2x2x, which is 22.

Answer:

dydx=2sinh⁑(2x)\frac{d y}{d x} = 2 \sinh(2x)

2. y=sinh⁑(3x)y = \sinh(3x)

The derivative of sinh⁑(3x)\sinh(3x) is:

ddx(sinh⁑(3x))=3cosh⁑(3x)\frac{d}{dx}(\sinh(3x)) = 3\cosh(3x)

Explanation:

  • The chain rule is applied again.
  • The derivative of sinh⁑(u)\sinh(u) is cosh⁑(u)\cosh(u), and the derivative of 3x3x is 33.

Answer:

dydx=3cosh⁑(3x)\frac{d y}{d x} = 3 \cosh(3x)

3. y=tanβ‘βˆ’1(sin⁑x)y = \tan^{-1}(\sin x)

We start by differentiating implicitly:

\tanhy=sin⁑x\tanhy = \sin x

Differentiating both sides with respect to xx:

sec⁑2ydydx=cos⁑x\sec^2 y \frac{dy}{dx} = \cos x

Now, solve for dydx\frac{dy}{dx}:

dydx=cos⁑xsec⁑2y=cos⁑x1βˆ’tan⁑2y\frac{dy}{dx} = \frac{\cos x}{\sec^2 y} = \frac{\cos x}{1 - \tan^2 y}

Using the identity tan⁑y=sin⁑x\tan y = \sin x, we can further simplify:

dydx=cos⁑x1βˆ’sin⁑2x=cos⁑xcos⁑2x=sec⁑x\frac{dy}{dx} = \frac{\cos x}{1 - \sin^2 x} = \frac{\cos x}{\cos^2 x} = \sec x

Answer:

dydx=sec⁑x\frac{d y}{d x} = \sec x

4. y=sinhβ‘βˆ’1(x3)y = \sinh^{-1}(x^3)

Start by differentiating the equation:

sinh⁑y=x3\sinh y = x^3

Differentiate both sides with respect to xx:

cosh⁑ydydx=3x2\cosh y \frac{dy}{dx} = 3x^2

Now, solve for dydx\frac{dy}{dx}:

dydx=3x2cosh⁑y\frac{dy}{dx} = \frac{3x^2}{\cosh y}

Using the identity cosh⁑2y=1+sinh⁑2y\cosh^2 y = 1 + \sinh^2 y and substituting sinh⁑y=x3\sinh y = x^3, we get:

dydx=3x21+(x3)2=3x21+x6\frac{dy}{dx} = \frac{3x^2}{\sqrt{1 + (x^3)^2}} = \frac{3x^2}{\sqrt{1 + x^6}}

Answer:

dydx=3x21+x6\frac{d y}{d x} = \frac{3x^2}{\sqrt{1 + x^6}}

5. y=ln⁑(tanh⁑x)y = \ln(\tanh x)

Differentiate using the chain rule:

dydx=1tanh⁑xβ‹…ddx(tanh⁑x)\frac{dy}{dx} = \frac{1}{\tanh x} \cdot \frac{d}{dx}(\tanh x)

The derivative of tanh⁑x\tanh x is \sech2x\sech^2 x, so:

dydx=\sech2xtanh⁑x\frac{dy}{dx} = \frac{\sech^2 x}{\tanh x}

Using the identity \sech2x=1βˆ’tanh⁑2x\sech^2 x = 1 - \tanh^2 x, the expression simplifies to:

dydx=2sinh⁑(2x)\frac{dy}{dx} = \frac{2}{\sinh(2x)}

Answer:

dydx=2csc⁑h(2x)\frac{d y}{d x} = 2 \csc h(2x)

6. y=sinhβ‘βˆ’1(x2)y = \sinh^{-1}\left(\frac{x}{2}\right)

Start with the equation:

sinh⁑y=x2\sinh y = \frac{x}{2}

Differentiate both sides with respect to xx:

cosh⁑ydydx=12\cosh y \frac{dy}{dx} = \frac{1}{2}

Now, solve for dydx\frac{dy}{dx}:

dydx=12cosh⁑y\frac{dy}{dx} = \frac{1}{2 \cosh y}

Using the identity cosh⁑2y=1+sinh⁑2y\cosh^2 y = 1 + \sinh^2 y and sinh⁑y=x2\sinh y = \frac{x}{2}, we get:

dydx=121+(x2)2=14+x2\frac{dy}{dx} = \frac{1}{2 \sqrt{1 + \left(\frac{x}{2}\right)^2}} = \frac{1}{\sqrt{4 + x^2}}

Answer:

dydx=14+x2\frac{d y}{d x} = \frac{1}{\sqrt{4 + x^2}}

Key Formulas or Methods Used

  • Chain Rule: Used to differentiate composite functions.
  • Hyperbolic Function Derivatives:
    • ddx(cosh⁑x)=sinh⁑x\frac{d}{dx}(\cosh x) = \sinh x
    • ddx(sinh⁑x)=cosh⁑x\frac{d}{dx}(\sinh x) = \cosh x
    • ddx(tanh⁑x)=\sech2x\frac{d}{dx}(\tanh x) = \sech^2 x
  • Inverse Function Derivatives:
    • ddx(sinhβ‘βˆ’1(x))=11+x2\frac{d}{dx}(\sinh^{-1}(x)) = \frac{1}{\sqrt{1 + x^2}}
    • ddx(tanβ‘βˆ’1(x))=11+x2\frac{d}{dx}(\tan^{-1}(x)) = \frac{1}{1 + x^2}

Summary of Steps

  1. Apply the chain rule where applicable (e.g., for cosh⁑(2x)\cosh(2x), sinh⁑(3x)\sinh(3x)).
  2. Use inverse hyperbolic function derivatives for functions like tanβ‘βˆ’1(sin⁑x)\tan^{-1}(\sin x) and sinhβ‘βˆ’1(x3)\sinh^{-1}(x^3).
  3. Simplify the expression using standard identities for hyperbolic functions.
  4. Solve for dydx\frac{dy}{dx} by rearranging terms and applying algebraic simplifications.