Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

2.7 Q-1

Question Statement

Find y2y^{2} for the following cases:

i. y=2x5βˆ’3x4+4x3+xβˆ’2y = 2 x^{5} - 3 x^{4} + 4 x^{3} + x - 2

ii. y=(2x+5)3/2y = (2x + 5)^{3/2}

iii. y=x+1xy = \sqrt{x} + \frac{1}{\sqrt{x}}


Background and Explanation

Before solving, it’s important to understand the following concepts:

  1. Differentiation: The derivative of a function gives the rate of change of the function with respect to the variable (in this case, xx).

  2. Power Rule: For a function of the form f(x)=xnf(x) = x^n, the derivative is fβ€²(x)=nβ‹…xnβˆ’1f'(x) = n \cdot x^{n-1}.

  3. Chain Rule: Used when differentiating composite functions. If y=f(g(x))y = f(g(x)), then dydx=fβ€²(g(x))β‹…gβ€²(x)\frac{dy}{dx} = f'(g(x)) \cdot g'(x).

In each part, we will differentiate the function twice to find the second derivative yβ€²β€²y''.


Solution

i. y=2x5βˆ’3x4+4x3+xβˆ’2y = 2 x^{5} - 3 x^{4} + 4 x^{3} + x - 2

  1. First derivative yβ€²y':
dydx=ddx(2x5βˆ’3x4+4x3+xβˆ’2) \frac{dy}{dx} = \frac{d}{dx}(2x^{5} - 3x^{4} + 4x^{3} + x - 2)

Applying the power rule:

yβ€²=10x4βˆ’12x3+12x2+1 y' = 10x^{4} - 12x^{3} + 12x^{2} + 1
  1. Second derivative yβ€²β€²y'': Differentiate yβ€²y' again:
yβ€²β€²=ddx(10x4βˆ’12x3+12x2+1) y'' = \frac{d}{dx}(10x^{4} - 12x^{3} + 12x^{2} + 1)

Applying the power rule again:

yβ€²β€²=40x3βˆ’36x2+24x y'' = 40x^{3} - 36x^{2} + 24x

Thus, the second derivative is:

yβ€²β€²=40x3βˆ’36x2+24xy'' = 40x^{3} - 36x^{2} + 24x

ii. y=(2x+5)3/2y = (2x + 5)^{3/2}

  1. First derivative yβ€²y': Use the chain rule:
yβ€²=32(2x+5)1/2β‹…ddx(2x+5) y' = \frac{3}{2}(2x + 5)^{1/2} \cdot \frac{d}{dx}(2x + 5)

The derivative of 2x+52x + 5 is 22, so:

yβ€²=3(2x+5)1/2 y' = 3(2x + 5)^{1/2}
  1. Second derivative yβ€²β€²y'': Differentiate yβ€²y' again using the chain rule:
yβ€²β€²=ddx(3(2x+5)1/2) y'' = \frac{d}{dx}\left( 3(2x + 5)^{1/2} \right)

Applying the chain rule:

yβ€²β€²=32(2x+5)βˆ’1/2β‹…ddx(2x+5) y'' = \frac{3}{2}(2x + 5)^{-1/2} \cdot \frac{d}{dx}(2x + 5)

The derivative of 2x+52x + 5 is 22, so:

yβ€²β€²=3(2x+5)1/2 y'' = \frac{3}{(2x + 5)^{1/2}}

Thus, the second derivative is:

yβ€²β€²=32x+5y'' = \frac{3}{\sqrt{2x + 5}}

iii. y=x+1xy = \sqrt{x} + \frac{1}{\sqrt{x}}

  1. First derivative yβ€²y': Differentiating both terms:
dydx=ddx(x1/2+xβˆ’1/2) \frac{dy}{dx} = \frac{d}{dx}\left(x^{1/2} + x^{-1/2}\right)

Using the power rule:

yβ€²=12xβˆ’1/2βˆ’12xβˆ’3/2 y' = \frac{1}{2} x^{-1/2} - \frac{1}{2} x^{-3/2}

Simplifying:

yβ€²=12(xβˆ’1/2βˆ’xβˆ’3/2) y' = \frac{1}{2}\left(x^{-1/2} - x^{-3/2}\right)
  1. Second derivative yβ€²β€²y'': Differentiating yβ€²y' again:
yβ€²β€²=ddx(12(xβˆ’1/2βˆ’xβˆ’3/2)) y'' = \frac{d}{dx}\left( \frac{1}{2} \left(x^{-1/2} - x^{-3/2}\right) \right)

Using the power rule:

yβ€²β€²=12(12xβˆ’3/2+32xβˆ’5/2) y'' = \frac{1}{2} \left( \frac{1}{2} x^{-3/2} + \frac{3}{2} x^{-5/2} \right)

Simplifying:

yβ€²β€²=βˆ’14xβˆ’3/2+34xβˆ’5/2 y'' = -\frac{1}{4} x^{-3/2} + \frac{3}{4} x^{-5/2}

Thus, the second derivative is:

yβ€²β€²=βˆ’x+34x3/2y'' = \frac{-x + 3}{4x^{3/2}}

Key Formulas or Methods Used

  • Power Rule: For a function f(x)=xnf(x) = x^n, the derivative is fβ€²(x)=nβ‹…xnβˆ’1f'(x) = n \cdot x^{n-1}.

  • Chain Rule: For a composite function y=f(g(x))y = f(g(x)), the derivative is yβ€²=fβ€²(g(x))β‹…gβ€²(x)y' = f'(g(x)) \cdot g'(x).


Summary of Steps

  1. i. Differentiate the function y=2x5βˆ’3x4+4x3+xβˆ’2y = 2 x^{5} - 3 x^{4} + 4 x^{3} + x - 2 twice to get:

    • First derivative: yβ€²=10x4βˆ’12x3+12x2+1y' = 10x^{4} - 12x^{3} + 12x^{2} + 1
    • Second derivative: yβ€²β€²=40x3βˆ’36x2+24xy'' = 40x^{3} - 36x^{2} + 24x
  2. ii. Differentiate y=(2x+5)3/2y = (2x + 5)^{3/2} using the chain rule:

    • First derivative: yβ€²=3(2x+5)1/2y' = 3(2x + 5)^{1/2}
    • Second derivative: yβ€²β€²=32x+5y'' = \frac{3}{\sqrt{2x + 5}}
  3. iii. Differentiate y=x+1xy = \sqrt{x} + \frac{1}{\sqrt{x}} twice:

    • First derivative: yβ€²=12(xβˆ’1/2βˆ’xβˆ’3/2)y' = \frac{1}{2}\left(x^{-1/2} - x^{-3/2}\right)
    • Second derivative: yβ€²β€²=βˆ’x+34x3/2y'' = \frac{-x + 3}{4x^{3/2}}