Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

2.7 Q-2

Question Statement

Find y2y_{2} for the following expressions:

i. y=x2eβˆ’xy = x^{2} e^{-x}
ii. y=ln⁑(2x+33x+2)y = \ln \left( \frac{2x+3}{3x+2} \right)


Background and Explanation

To solve this problem, we need to differentiate the given functions twice with respect to xx.
The first expression involves a product of two functions, x2x^2 and eβˆ’xe^{-x}, which requires the product rule for differentiation.
The second expression involves the quotient rule to handle the division inside the logarithm, and the chain rule will also be applied as part of the differentiation process.


Solution

i. For y=x2eβˆ’xy = x^2 e^{-x}:

  1. First Differentiation: We apply the product rule, which states that if y=u(x)v(x)y = u(x)v(x), then: dydx=uβ€²(x)v(x)+u(x)vβ€²(x)\frac{dy}{dx} = u'(x)v(x) + u(x)v'(x)

    Here, u(x)=x2u(x) = x^2 and v(x)=eβˆ’xv(x) = e^{-x}.
    Differentiating each part:

    • uβ€²(x)=2xu'(x) = 2x
    • vβ€²(x)=βˆ’eβˆ’xv'(x) = -e^{-x} (because the derivative of eβˆ’xe^{-x} is βˆ’eβˆ’x-e^{-x})

    Using the product rule:

y1=eβˆ’x(2x)+x2(βˆ’eβˆ’x)=eβˆ’x(2xβˆ’x2) y_1 = e^{-x} (2x) + x^2 (-e^{-x}) = e^{-x} (2x - x^2)
  1. Second Differentiation: Now, we differentiate y1=eβˆ’x(2xβˆ’x2)y_1 = e^{-x} (2x - x^2) with respect to xx.

    Again, applying the product rule:

    • First term: eβˆ’x(2x)e^{-x} (2x) gives eβˆ’x(2βˆ’2x)e^{-x} (2 - 2x)
    • Second term: x2(βˆ’eβˆ’x)x^2 (-e^{-x}) gives βˆ’eβˆ’x(2xβˆ’x2)-e^{-x} (2x - x^2)

    Combining these results:

y2=eβˆ’x(2βˆ’2x)+(2xβˆ’x2)(βˆ’eβˆ’x) y_2 = e^{-x} (2 - 2x) + (2x - x^2)(-e^{-x})

Simplifying:

y2=eβˆ’x(x2βˆ’4x+2) y_2 = e^{-x} (x^2 - 4x + 2)

Final Answer for part i: y2=eβˆ’x(x2βˆ’4x+2)y_2 = e^{-x} (x^2 - 4x + 2)


ii. For y=ln⁑(2x+33x+2)y = \ln \left( \frac{2x+3}{3x+2} \right):

  1. First Differentiation: We use the logarithmic property that ln⁑(a/b)=ln⁑(a)βˆ’ln⁑(b)\ln(a/b) = \ln(a) - \ln(b), so:
y=ln⁑(2x+3)βˆ’ln⁑(3x+2) y = \ln(2x+3) - \ln(3x+2)

Now, differentiating each term:

  • Derivative of ln⁑(2x+3)\ln(2x+3) is 22x+3\frac{2}{2x+3}
  • Derivative of ln⁑(3x+2)\ln(3x+2) is 33x+2\frac{3}{3x+2}

So, the first derivative y1y_1 is:

y1=22x+3βˆ’33x+2 y_1 = \frac{2}{2x+3} - \frac{3}{3x+2}
  1. Second Differentiation: Now, we differentiate y1y_1 using the quotient rule: ddx(ab)=bβ‹…aβ€²βˆ’aβ‹…bβ€²b2\frac{d}{dx} \left( \frac{a}{b} \right) = \frac{b \cdot a' - a \cdot b'}{b^2}

    Applying this to both terms:

    • For the first term, we apply the quotient rule:
ddx(22x+3)=βˆ’(2)(2)(2x+3)2=βˆ’4(2x+3)2 \frac{d}{dx}\left(\frac{2}{2x+3}\right) = \frac{-(2)(2)}{(2x+3)^2} = \frac{-4}{(2x+3)^2}
  • For the second term, applying the quotient rule again:
ddx(33x+2)=βˆ’(3)(3)(3x+2)2=βˆ’9(3x+2)2 \frac{d}{dx}\left(\frac{3}{3x+2}\right) = \frac{-(3)(3)}{(3x+2)^2} = \frac{-9}{(3x+2)^2}

Therefore, the second derivative y2y_2 is:

y2=βˆ’4(2x+3)2+9(3x+2)2 y_2 = \frac{-4}{(2x+3)^2} + \frac{9}{(3x+2)^2}

To simplify, we combine the fractions:

y2=βˆ’4(3x+2)2+9(2x+3)2(2x+3)2(3x+2)2 y_2 = \frac{-4(3x+2)^2 + 9(2x+3)^2}{(2x+3)^2 (3x+2)^2}

Expanding both squares:

=βˆ’4(9x2+12x+4)+9(4x2+12x+9)(2x+3)2(3x+2)2 = \frac{-4(9x^2 + 12x + 4) + 9(4x^2 + 12x + 9)}{(2x+3)^2 (3x+2)^2}

After expanding:

y2=60x+65(2x+3)2(3x+2)2 y_2 = \frac{60x + 65}{(2x+3)^2 (3x+2)^2}

Final Answer for part ii: y2=60x+65(2x+3)2(3x+2)2y_2 = \frac{60x + 65}{(2x+3)^2 (3x+2)^2}


Key Formulas or Methods Used

  • Product Rule:
    ddx(u(x)v(x))=uβ€²(x)v(x)+u(x)vβ€²(x)\frac{d}{dx}(u(x)v(x)) = u'(x)v(x) + u(x)v'(x)

  • Quotient Rule:
    ddx(a(x)b(x))=b(x)aβ€²(x)βˆ’a(x)bβ€²(x)b(x)2\frac{d}{dx}\left(\frac{a(x)}{b(x)}\right) = \frac{b(x)a'(x) - a(x)b'(x)}{b(x)^2}

  • Logarithmic Differentiation: ddxln⁑(u(x))=uβ€²(x)u(x)\frac{d}{dx} \ln(u(x)) = \frac{u'(x)}{u(x)}


Summary of Steps

  1. For part i:

    • Differentiate y=x2eβˆ’xy = x^2 e^{-x} using the product rule.
    • Differentiate again to find y2y_2.
  2. For part ii:

    • Break down y=ln⁑(2x+33x+2)y = \ln \left( \frac{2x+3}{3x+2} \right) using logarithmic properties.
    • Differentiate the two logarithmic terms.
    • Apply the quotient rule for the second derivative.
    • Simplify the final expression for y2y_2.