Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

2.7 Q-4

Question Statement

Find y4y^{4} for the following functions:

  • i. y=sin⁑(3x)y = \sin(3x)
  • ii. y=cos⁑3(x)y = \cos^3(x)
  • iii. y=ln⁑(x2βˆ’9)y = \ln(x^2 - 9)

Background and Explanation

To solve this problem, you need to use basic calculus concepts like differentiation. The goal is to differentiate the given functions four times to find y4y^4. We’ll use the chain rule, product rule, and other differentiation techniques where necessary.


Solution

i. y=sin⁑(3x)y = \sin(3x)

To differentiate y=sin⁑(3x)y = \sin(3x), we apply the chain rule.

  • First derivative:
y1=ddx[sin⁑(3x)]=3cos⁑(3x) y_1 = \frac{d}{dx} [\sin(3x)] = 3 \cos(3x)
  • Second derivative:
y2=ddx[3cos⁑(3x)]=βˆ’9sin⁑(3x) y_2 = \frac{d}{dx} [3 \cos(3x)] = -9 \sin(3x)
  • Third derivative:
y3=ddx[βˆ’9sin⁑(3x)]=βˆ’27cos⁑(3x) y_3 = \frac{d}{dx} [-9 \sin(3x)] = -27 \cos(3x)
  • Fourth derivative:
y4=ddx[βˆ’27cos⁑(3x)]=81sin⁑(3x) y_4 = \frac{d}{dx} [-27 \cos(3x)] = 81 \sin(3x)

Answer: y4=81sin⁑(3x)y_4 = 81 \sin(3x)


ii. y=cos⁑3(x)y = \cos^3(x)

For y=cos⁑3(x)y = \cos^3(x), we’ll use the chain rule and product rule to differentiate.

  • First derivative:
y1=ddx[cos⁑3(x)]=βˆ’3sin⁑(x)cos⁑2(x) y_1 = \frac{d}{dx} [\cos^3(x)] = -3 \sin(x) \cos^2(x)
  • Second derivative:
y2=ddx[βˆ’3sin⁑(x)cos⁑2(x)]=βˆ’3cos⁑(x)+9sin⁑2(x)cos⁑(x) y_2 = \frac{d}{dx} [-3 \sin(x) \cos^2(x)] = -3 \cos(x) + 9 \sin^2(x) \cos(x)
  • Third derivative:
y3=ddx[βˆ’3cos⁑(x)+9sin⁑2(x)cos⁑(x)]=βˆ’6sin⁑(x)cos⁑2(x)βˆ’27sin⁑(x)cos⁑(x) y_3 = \frac{d}{dx} [-3 \cos(x) + 9 \sin^2(x) \cos(x)] = -6 \sin(x) \cos^2(x) - 27 \sin(x) \cos(x)
  • Fourth derivative:
y4=ddx[βˆ’6sin⁑(x)cos⁑2(x)βˆ’27sin⁑(x)cos⁑(x)]=βˆ’60cos⁑(x)+81cos⁑3(x) y_4 = \frac{d}{dx} [-6 \sin(x) \cos^2(x) - 27 \sin(x) \cos(x)] = -60 \cos(x) + 81 \cos^3(x)

Answer: y4=βˆ’60cos⁑(x)+81cos⁑3(x)y_4 = -60 \cos(x) + 81 \cos^3(x)


iii. y=ln⁑(x2βˆ’9)y = \ln(x^2 - 9)

For y=ln⁑(x2βˆ’9)y = \ln(x^2 - 9), we use the chain rule and differentiate multiple times.

  • First derivative:
dydx=ddx[ln⁑(x2βˆ’9)]=1x2βˆ’9β‹…2x=2xx2βˆ’9 \frac{dy}{dx} = \frac{d}{dx} \left[ \ln(x^2 - 9) \right] = \frac{1}{x^2 - 9} \cdot 2x = \frac{2x}{x^2 - 9}
  • Second derivative:
y2=ddx[2xx2βˆ’9]=βˆ’2(x2+9)(x2βˆ’9)2 y_2 = \frac{d}{dx} \left[ \frac{2x}{x^2 - 9} \right] = -\frac{2(x^2 + 9)}{(x^2 - 9)^2}
  • Third derivative:
y3=ddx[βˆ’2(x2+9)(x2βˆ’9)2]=12x(x2+9)(x2βˆ’9)3 y_3 = \frac{d}{dx} \left[ -\frac{2(x^2 + 9)}{(x^2 - 9)^2} \right] = \frac{12x(x^2 + 9)}{(x^2 - 9)^3}
  • Fourth derivative:
y4=ddx[12x(x2+9)(x2βˆ’9)3]=βˆ’6[1(x+3)4+1(xβˆ’3)4] y_4 = \frac{d}{dx} \left[ \frac{12x(x^2 + 9)}{(x^2 - 9)^3} \right] = -6 \left[ \frac{1}{(x + 3)^4} + \frac{1}{(x - 3)^4} \right]

Answer: y4=βˆ’6[1(x+3)4+1(xβˆ’3)4]y_4 = -6 \left[\frac{1}{(x + 3)^4} + \frac{1}{(x - 3)^4}\right]


Key Formulas or Methods Used

  • Chain Rule:
ddx[f(g(x))]=fβ€²(g(x))β‹…gβ€²(x) \frac{d}{dx} [f(g(x))] = f'(g(x)) \cdot g'(x)
  • Product Rule:
ddx[u(x)v(x)]=uβ€²(x)v(x)+u(x)vβ€²(x) \frac{d}{dx} [u(x)v(x)] = u'(x)v(x) + u(x)v'(x)

Summary of Steps

  1. Differentiate the given function using the chain rule and product rule.
  2. Compute the first, second, third, and fourth derivatives.
  3. Simplify each derivative step-by-step.
  4. Write the final expression for y4y_4.