Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

2.7 Q-6

Question Statement

Given that

y=exsin⁑x,y = e^x \sin x,

show that

d2ydx2=2dydx+2y=0.\frac{d^2 y}{dx^2} = 2 \frac{dy}{dx} + 2y = 0.

Background and Explanation

This problem involves finding the second derivative of a function that is a product of an exponential and trigonometric function. We will need to apply the product rule for differentiation twice. Additionally, we will use the result of the first derivative to help compute the second derivative. Understanding these basic differentiation rules is crucial for solving the problem.


Solution

Step 1: Compute the first derivative

We are given that

y=exsin⁑x.y = e^x \sin x.

To find the first derivative dydx\frac{dy}{dx}, we apply the product rule:

dydx=ddx(exsin⁑x)=exsin⁑x+excos⁑x.\frac{dy}{dx} = \frac{d}{dx} \left( e^x \sin x \right) = e^x \sin x + e^x \cos x.

Thus, the first derivative is:

dydx=exsin⁑x+excos⁑x.\frac{dy}{dx} = e^x \sin x + e^x \cos x.

Step 2: Compute the second derivative

Next, differentiate dydx=exsin⁑x+excos⁑x\frac{dy}{dx} = e^x \sin x + e^x \cos x with respect to xx to find d2ydx2\frac{d^2y}{dx^2}. Again, apply the product rule to each term:

d2ydx2=ddx(exsin⁑x)+ddx(excos⁑x).\frac{d^2 y}{dx^2} = \frac{d}{dx} \left( e^x \sin x \right) + \frac{d}{dx} \left( e^x \cos x \right).

This gives:

d2ydx2=exsin⁑x+excos⁑x+excos⁑xβˆ’exsin⁑x.\frac{d^2 y}{dx^2} = e^x \sin x + e^x \cos x + e^x \cos x - e^x \sin x.

Step 3: Simplify the second derivative

Simplify the expression for d2ydx2\frac{d^2 y}{dx^2}:

d2ydx2=2excos⁑x.\frac{d^2 y}{dx^2} = 2 e^x \cos x.

Step 4: Substitute into the desired equation

We know that

dydx=exsin⁑x+excos⁑x,\frac{dy}{dx} = e^x \sin x + e^x \cos x,

so we can substitute this into the equation for d2ydx2\frac{d^2 y}{dx^2}. We get:

d2ydx2=2(dydxβˆ’exsin⁑x).\frac{d^2 y}{dx^2} = 2 \left( \frac{dy}{dx} - e^x \sin x \right).

Thus,

d2ydx2βˆ’2dydx+2y=0.\frac{d^2 y}{dx^2} - 2 \frac{dy}{dx} + 2y = 0.

This is the required result, and we have proven that:

d2ydx2=2dydx+2y=0.\frac{d^2 y}{dx^2} = 2 \frac{dy}{dx} + 2y = 0.

Key Formulas or Methods Used

  • Product Rule for differentiation:
ddx[f(x)g(x)]=fβ€²(x)g(x)+f(x)gβ€²(x). \frac{d}{dx} [f(x)g(x)] = f'(x)g(x) + f(x)g'(x).

Summary of Steps

  1. Apply the product rule to differentiate y=exsin⁑xy = e^x \sin x to get dydx=exsin⁑x+excos⁑x\frac{dy}{dx} = e^x \sin x + e^x \cos x.
  2. Differentiate dydx\frac{dy}{dx} again using the product rule to get d2ydx2=2excos⁑x\frac{d^2 y}{dx^2} = 2 e^x \cos x.
  3. Substitute the expression for dydx\frac{dy}{dx} into d2ydx2=2(dydxβˆ’exsin⁑x)\frac{d^2 y}{dx^2} = 2 \left( \frac{dy}{dx} - e^x \sin x \right).
  4. Rearrange to show d2ydx2βˆ’2dydx+2y=0\frac{d^2 y}{dx^2} - 2 \frac{dy}{dx} + 2y = 0.