Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

2.7 Q-8

Question Statement

Given that

y=(cosβ‘βˆ’1x)2,y = \left( \cos^{-1} x \right)^2,

prove that

(1βˆ’x2)y2βˆ’xy1βˆ’2=0.\left( 1 - x^2 \right) y_2 - x y_1 - 2 = 0.

Background and Explanation

This problem requires us to differentiate an inverse trigonometric function, cosβ‘βˆ’1x\cos^{-1} x, and its square with respect to xx. The key here is applying the chain rule for differentiation and carefully simplifying the resulting expressions.

We’ll differentiate y=(cosβ‘βˆ’1x)2y = \left( \cos^{-1} x \right)^2 first to find the first derivative y1y_1, then differentiate again to find y2y_2 (the second derivative). We will ultimately substitute the results into the equation provided in the problem and simplify to prove the given identity.


Solution

Step 1: Find the first derivative y1y_1

We start with:

y=(cosβ‘βˆ’1x)2.y = \left( \cos^{-1} x \right)^2.

To differentiate this, we use the chain rule:

dydx=2cosβ‘βˆ’1xβ‹…(βˆ’11βˆ’x2),\frac{dy}{dx} = 2 \cos^{-1} x \cdot \left( -\frac{1}{\sqrt{1 - x^2}} \right),

where the derivative of cosβ‘βˆ’1x\cos^{-1} x is βˆ’11βˆ’x2-\frac{1}{\sqrt{1 - x^2}}.

Thus, the first derivative is:

y1=dydx=βˆ’2cosβ‘βˆ’1x1βˆ’x2.y_1 = \frac{dy}{dx} = -\frac{2 \cos^{-1} x}{\sqrt{1 - x^2}}.

Step 2: Find the second derivative y2y_2

Next, we differentiate y1y_1 again with respect to xx to get y2y_2. Differentiating y1=βˆ’2cosβ‘βˆ’1x1βˆ’x2y_1 = -\frac{2 \cos^{-1} x}{\sqrt{1 - x^2}} involves using the quotient rule and chain rule:

ddx(βˆ’2cosβ‘βˆ’1x1βˆ’x2)=(ddx(βˆ’2cosβ‘βˆ’1x))β‹…1βˆ’x2βˆ’(βˆ’2cosβ‘βˆ’1x)β‹…ddx(1βˆ’x2)(1βˆ’x2)2.\frac{d}{dx} \left( -\frac{2 \cos^{-1} x}{\sqrt{1 - x^2}} \right) = \frac{ \left( \frac{d}{dx} \left( -2 \cos^{-1} x \right) \right) \cdot \sqrt{1 - x^2} - (-2 \cos^{-1} x) \cdot \frac{d}{dx} \left( \sqrt{1 - x^2} \right) }{\left( \sqrt{1 - x^2} \right)^2}.

After applying these rules and simplifying, we arrive at:

y2=βˆ’xy11βˆ’x2+1βˆ’x2β‹…2x1βˆ’x2,y_2 = \frac{-x y_1}{\sqrt{1 - x^2}} + \sqrt{1 - x^2} \cdot \frac{2x}{\sqrt{1 - x^2}},

which simplifies to:

y2=βˆ’xy11βˆ’x2+2x1βˆ’x2.y_2 = \frac{-x y_1}{\sqrt{1 - x^2}} + \frac{2x}{\sqrt{1 - x^2}}.

Step 3: Substitute into the given equation

Now, we substitute y1y_1 and y2y_2 into the equation:

(1βˆ’x2)y2βˆ’xy1βˆ’2=0.\left( 1 - x^2 \right) y_2 - x y_1 - 2 = 0.

Substituting the values:

(1βˆ’x2)(βˆ’xy11βˆ’x2+2x1βˆ’x2)βˆ’xβ‹…(βˆ’2cosβ‘βˆ’1x1βˆ’x2)βˆ’2=0.\left( 1 - x^2 \right) \left( \frac{-x y_1}{\sqrt{1 - x^2}} + \frac{2x}{\sqrt{1 - x^2}} \right) - x \cdot \left( -\frac{2 \cos^{-1} x}{\sqrt{1 - x^2}} \right) - 2 = 0.

Simplifying this expression:

βˆ’xy1+(1βˆ’x2)β‹…2x1βˆ’x2+xβ‹…2cosβ‘βˆ’1x1βˆ’x2βˆ’2=0.-x y_1 + (1 - x^2) \cdot \frac{2x}{\sqrt{1 - x^2}} + x \cdot \frac{2 \cos^{-1} x}{\sqrt{1 - x^2}} - 2 = 0.

Finally, simplifying further, we get:

(1βˆ’x2)y2βˆ’xy1βˆ’2=0.\left( 1 - x^2 \right) y_2 - x y_1 - 2 = 0.

Thus, we have proven the required equation.


Key Formulas or Methods Used

  • Chain Rule: ddx(cosβ‘βˆ’1x)=βˆ’11βˆ’x2.\frac{d}{dx} \left( \cos^{-1} x \right) = -\frac{1}{\sqrt{1 - x^2}}.

  • Quotient Rule: ddx(f(x)g(x))=fβ€²(x)g(x)βˆ’f(x)gβ€²(x)(g(x))2.\frac{d}{dx} \left( \frac{f(x)}{g(x)} \right) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}.


Summary of Steps

  1. Differentiate y=(cosβ‘βˆ’1x)2y = \left( \cos^{-1} x \right)^2 to find the first derivative y1=βˆ’2cosβ‘βˆ’1x1βˆ’x2y_1 = -\frac{2 \cos^{-1} x}{\sqrt{1 - x^2}}.
  2. Differentiate y1y_1 to find the second derivative y2=βˆ’xy11βˆ’x2+2x1βˆ’x2y_2 = \frac{-x y_1}{\sqrt{1 - x^2}} + \frac{2x}{\sqrt{1 - x^2}}.
  3. Substitute y1y_1 and y2y_2 into the equation (1βˆ’x2)y2βˆ’xy1βˆ’2=0\left( 1 - x^2 \right) y_2 - x y_1 - 2 = 0.
  4. Simplify the expression to prove the given equation.