Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

2.7 Q-9

Question Statement

Given that

y=acos⁑(ln⁑x)+bsin⁑(ln⁑x),y = a \cos (\ln x) + b \sin (\ln x),

prove that

x2d2ydx2+xdydx+y=0.x^2 \frac{d^2 y}{dx^2} + x \frac{d y}{dx} + y = 0.

Background and Explanation

This problem involves differentiating a function that combines both trigonometric and logarithmic functions. We will apply the chain rule for differentiation, as the argument of both the cosine and sine functions is ln⁑x\ln x, which requires special handling. We will differentiate yy twice to find y1y_1 (the first derivative) and y2y_2 (the second derivative), and then substitute these into the given equation to prove the result.


Solution

Step 1: Find the first derivative y1y_1

Start with the given function:

y=acos⁑(ln⁑x)+bsin⁑(ln⁑x).y = a \cos (\ln x) + b \sin (\ln x).

Using the chain rule to differentiate, we get:

dydx=βˆ’asin⁑(ln⁑x)β‹…1x+bcos⁑(ln⁑x)β‹…1x.\frac{d y}{d x} = -a \sin (\ln x) \cdot \frac{1}{x} + b \cos (\ln x) \cdot \frac{1}{x}.

Thus, the first derivative is:

y1=dydx=βˆ’asin⁑(ln⁑x)+bcos⁑(ln⁑x)x.y_1 = \frac{d y}{d x} = \frac{-a \sin (\ln x) + b \cos (\ln x)}{x}.

Step 2: Multiply by xx to simplify the expression

Now, multiply both sides by xx:

xdydx=βˆ’asin⁑(ln⁑x)+bcos⁑(ln⁑x).x \frac{d y}{d x} = -a \sin (\ln x) + b \cos (\ln x).

Step 3: Differentiate again to find the second derivative y2y_2

Next, we differentiate xdydx=βˆ’asin⁑(ln⁑x)+bcos⁑(ln⁑x)x \frac{d y}{d x} = -a \sin (\ln x) + b \cos (\ln x) with respect to xx using the product rule:

ddx(xdydx)=ddx(βˆ’asin⁑(ln⁑x)+bcos⁑(ln⁑x)).\frac{d}{d x} \left( x \frac{d y}{d x} \right) = \frac{d}{d x} \left( -a \sin (\ln x) + b \cos (\ln x) \right).

Differentiating both sides:

dydx+xd2ydx2=βˆ’acos⁑(ln⁑x)x+βˆ’bsin⁑(ln⁑x)x.\frac{d y}{d x} + x \frac{d^2 y}{d x^2} = -\frac{a \cos (\ln x)}{x} + \frac{-b \sin (\ln x)}{x}.

Step 4: Rearrange the expression

Rearrange the above equation to isolate x2d2ydx2x^2 \frac{d^2 y}{dx^2} and xdydxx \frac{d y}{dx}:

xdydx+x2d2ydx2=βˆ’(acos⁑(ln⁑x)+bsin⁑(ln⁑x)).x \frac{d y}{d x} + x^2 \frac{d^2 y}{d x^2} = -\left( a \cos (\ln x) + b \sin (\ln x) \right).

Step 5: Substitute yy from the original equation

Note that from the original equation, we have:

y=acos⁑(ln⁑x)+bsin⁑(ln⁑x).y = a \cos (\ln x) + b \sin (\ln x).

Substitute this into the equation:

x2d2ydx2+xdydx=βˆ’y.x^2 \frac{d^2 y}{d x^2} + x \frac{d y}{d x} = -y.

Step 6: Conclude the proof

Now, we can add yy to both sides:

x2d2ydx2+xdydx+y=0.x^2 \frac{d^2 y}{d x^2} + x \frac{d y}{d x} + y = 0.

Thus, we have proven the required identity.


Key Formulas or Methods Used

  • Chain Rule: ddx(cos⁑(ln⁑x))=βˆ’sin⁑(ln⁑x)x,ddx(sin⁑(ln⁑x))=cos⁑(ln⁑x)x.\frac{d}{dx} \left( \cos (\ln x) \right) = -\frac{\sin (\ln x)}{x}, \quad \frac{d}{dx} \left( \sin (\ln x) \right) = \frac{\cos (\ln x)}{x}.

  • Product Rule: ddx(xf(x))=f(x)+xfβ€²(x).\frac{d}{dx} \left( x f(x) \right) = f(x) + x f'(x).


Summary of Steps

  1. Differentiate y=acos⁑(ln⁑x)+bsin⁑(ln⁑x)y = a \cos (\ln x) + b \sin (\ln x) to find the first derivative y1=βˆ’asin⁑(ln⁑x)+bcos⁑(ln⁑x)xy_1 = \frac{-a \sin (\ln x) + b \cos (\ln x)}{x}.
  2. Multiply the first derivative by xx to simplify it: xdydx=βˆ’asin⁑(ln⁑x)+bcos⁑(ln⁑x)x \frac{d y}{d x} = -a \sin (\ln x) + b \cos (\ln x).
  3. Differentiate again to find the second derivative y2y_2 using the product rule.
  4. Rearrange the resulting equation to express it in terms of yy.
  5. Conclude that x2d2ydx2+xdydx+y=0x^2 \frac{d^2 y}{dx^2} + x \frac{d y}{dx} + y = 0, as required.