Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

2.8 Q-1

Question Statement

  1. Prove the following series expansions using the Maclaurin series:

    • i. ln⁑(1+x)=xβˆ’x22+x33βˆ’x44+…\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \ldots
    • ii. cos⁑x=1βˆ’x22!+x44!βˆ’x66!+…\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \ldots
    • iii. 1βˆ’x=1+x2βˆ’x28+x316+…\sqrt{1-x} = 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16} + \ldots
    • iv. ex=1+x+x22!+x33!+…e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots
    • v. e2x=1+2x+4x22!+8x33!+…e^{2x} = 1 + 2x + \frac{4x^2}{2!} + \frac{8x^3}{3!} + \ldots

Background and Explanation

The Maclaurin series is a special case of the Taylor series expanded about x=0x=0. For a function f(x)f(x), the series is given by:

f(x)=f(0)+fβ€²(0)x+fβ€²β€²(0)x22!+f(3)(0)x33!+…f(x) = f(0) + f'(0)x + \frac{f''(0)x^2}{2!} + \frac{f^{(3)}(0)x^3}{3!} + \ldots

Here, fβ€²(x)f'(x), fβ€²β€²(x)f''(x), etc., denote successive derivatives of f(x)f(x). To compute the series:

  1. Evaluate the function and its derivatives at x=0x=0.
  2. Substitute these values into the Maclaurin series formula.

Solution

i. Prove ln⁑(1+x)=xβˆ’x22+x33βˆ’x44+…\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \ldots

  1. Let f(x)=ln⁑(1+x)f(x) = \ln(1+x). Compute derivatives:

    • fβ€²(x)=11+xf'(x) = \frac{1}{1+x}
    • fβ€²β€²(x)=βˆ’1(1+x)2f''(x) = -\frac{1}{(1+x)^2}
    • f(3)(x)=2(1+x)3f^{(3)}(x) = \frac{2}{(1+x)^3}
    • f(4)(x)=βˆ’6(1+x)4f^{(4)}(x) = -\frac{6}{(1+x)^4}
  2. Evaluate at x=0x=0:

    • f(0)=ln⁑(1)=0f(0) = \ln(1) = 0
    • fβ€²(0)=1f'(0) = 1
    • fβ€²β€²(0)=βˆ’1f''(0) = -1
    • f(3)(0)=2f^{(3)}(0) = 2
    • f(4)(0)=βˆ’6f^{(4)}(0) = -6
  3. Substitute into the Maclaurin series:

f(x)=f(0)+fβ€²(0)x+fβ€²β€²(0)x22!+f(3)(0)x33!+f(4)(0)x44!+… f(x) = f(0) + f'(0)x + \frac{f''(0)x^2}{2!} + \frac{f^{(3)}(0)x^3}{3!} + \frac{f^{(4)}(0)x^4}{4!} + \ldots ln⁑(1+x)=0+xβˆ’x22+x33βˆ’x44+… \ln(1+x) = 0 + x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \ldots

ii. Prove cos⁑x=1βˆ’x22!+x44!βˆ’x66!+…\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \ldots

  1. Let f(x)=cos⁑xf(x) = \cos x. Compute derivatives:

    • fβ€²(x)=βˆ’sin⁑xf'(x) = -\sin x
    • fβ€²β€²(x)=βˆ’cos⁑xf''(x) = -\cos x
    • f(3)(x)=sin⁑xf^{(3)}(x) = \sin x
    • f(4)(x)=cos⁑xf^{(4)}(x) = \cos x
  2. Evaluate at x=0x=0:

    • f(0)=1f(0) = 1
    • fβ€²(0)=0f'(0) = 0
    • fβ€²β€²(0)=βˆ’1f''(0) = -1
    • f(3)(0)=0f^{(3)}(0) = 0
    • f(4)(0)=1f^{(4)}(0) = 1
  3. Substitute into the Maclaurin series:

cos⁑x=f(0)+fβ€²β€²(0)x22!+f(4)(0)x44!+… \cos x = f(0) + \frac{f''(0)x^2}{2!} + \frac{f^{(4)}(0)x^4}{4!} + \ldots cos⁑x=1βˆ’x22!+x44!βˆ’x66!+… \cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \ldots

iii. Prove 1βˆ’x=1+x2βˆ’x28+x316+…\sqrt{1-x} = 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16} + \ldots

  1. Let f(x)=(1βˆ’x)12f(x) = (1-x)^{\frac{1}{2}}. Compute derivatives:

    • fβ€²(x)=βˆ’12(1βˆ’x)βˆ’12f'(x) = -\frac{1}{2}(1-x)^{-\frac{1}{2}}
    • fβ€²β€²(x)=14(1βˆ’x)βˆ’32f''(x) = \frac{1}{4}(1-x)^{-\frac{3}{2}}
    • f(3)(x)=βˆ’38(1βˆ’x)βˆ’52f^{(3)}(x) = -\frac{3}{8}(1-x)^{-\frac{5}{2}}
    • f(4)(x)=1516(1βˆ’x)βˆ’72f^{(4)}(x) = \frac{15}{16}(1-x)^{-\frac{7}{2}}
  2. Evaluate at x=0x=0:

    • f(0)=1f(0) = 1
    • fβ€²(0)=βˆ’12f'(0) = -\frac{1}{2}
    • fβ€²β€²(0)=βˆ’18f''(0) = -\frac{1}{8}
    • f(3)(0)=316f^{(3)}(0) = \frac{3}{16}
    • f(4)(0)=βˆ’15128f^{(4)}(0) = -\frac{15}{128}
  3. Substitute into the Maclaurin series:

1βˆ’x=1+x2βˆ’x28+x316βˆ’x4128+… \sqrt{1-x} = 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16} - \frac{x^4}{128} + \ldots

iv. Prove ex=1+x+x22!+x33!+…e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots

  1. Let f(x)=exf(x) = e^x. Compute derivatives:

    • All derivatives are f(n)(x)=exf^{(n)}(x) = e^x.
  2. Evaluate at x=0x=0:

    • f(0)=fβ€²(0)=fβ€²β€²(0)=…=1f(0) = f'(0) = f''(0) = \ldots = 1
  3. Substitute into the Maclaurin series:

ex=1+x+x22!+x33!+… e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots

v. Prove e2x=1+2x+4x22!+8x33!+…e^{2x} = 1 + 2x + \frac{4x^2}{2!} + \frac{8x^3}{3!} + \ldots

  1. Let f(x)=e2xf(x) = e^{2x}. Compute derivatives:

    • fβ€²(x)=2e2xf'(x) = 2e^{2x}, fβ€²β€²(x)=4e2xf''(x) = 4e^{2x}, f(3)(x)=8e2xf^{(3)}(x) = 8e^{2x}, etc.
  2. Evaluate at x=0x=0:

    • f(0)=1f(0) = 1, fβ€²(0)=2f'(0) = 2, fβ€²β€²(0)=4f''(0) = 4, f(3)(0)=8f^{(3)}(0) = 8, etc.
  3. Substitute into the Maclaurin series:

e2x=1+2x+4x22!+8x33!+… e^{2x} = 1 + 2x + \frac{4x^2}{2!} + \frac{8x^3}{3!} + \ldots

Key Formulas or Methods Used

  1. Maclaurin series expansion:
f(x)=f(0)+fβ€²(0)x+fβ€²β€²(0)x22!+… f(x) = f(0) + f'(0)x + \frac{f''(0)x^2}{2!} + \ldots
  1. Successive differentiation and substitution at x=0x=0.

Summary of Steps

  1. Define f(x)f(x) for the given series.
  2. Compute the necessary derivatives of f(x)f(x).
  3. Evaluate derivatives at x=0x=0.
  4. Substitute into the Maclaurin series formula.
  5. Simplify and confirm the series expansion.