Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

2.8 Q-2

Question Statement

Prove that:

Cos⁑(x+h)=Cos⁑xβˆ’hSin⁑xβˆ’h22!Cos⁑x+h33!Sin⁑x+…\operatorname{Cos}(x + h) = \operatorname{Cos}x - h\operatorname{Sin}x - \frac{h^2}{2!}\operatorname{Cos}x + \frac{h^3}{3!}\operatorname{Sin}x + \ldots

and evaluate Cos⁑(61∘)\operatorname{Cos}(61^\circ).


Background and Explanation

The problem involves the Taylor series expansion of a function, specifically Cos⁑(x+h)\operatorname{Cos}(x + h), where xx is a known angle, and hh is a small increment.
The Taylor series states that any differentiable function f(x)f(x) around xx can be expanded as:

f(x+h)=f(x)+fβ€²(x)1!h+fβ€²β€²(x)2!h2+fβ€²β€²β€²(x)3!h3+…f(x + h) = f(x) + \frac{f'(x)}{1!}h + \frac{f''(x)}{2!}h^2 + \frac{f'''(x)}{3!}h^3 + \ldots

For trigonometric functions like Cos⁑x\operatorname{Cos}x, we compute derivatives in advance:

  • f(x)=Cos⁑xf(x) = \operatorname{Cos}x
  • fβ€²(x)=βˆ’Sin⁑xf'(x) = -\operatorname{Sin}x
  • fβ€²β€²(x)=βˆ’Cos⁑xf''(x) = -\operatorname{Cos}x
  • fβ€²β€²β€²(x)=Sin⁑xf'''(x) = \operatorname{Sin}x

Solution

Step 1: Taylor Series Expansion for Cos⁑(x+h)\operatorname{Cos}(x + h)

Using the formula:

f(x+h)=f(x)+fβ€²(x)1!h+fβ€²β€²(x)2!h2+fβ€²β€²β€²(x)3!h3+…f(x + h) = f(x) + \frac{f'(x)}{1!}h + \frac{f''(x)}{2!}h^2 + \frac{f'''(x)}{3!}h^3 + \ldots

Substitute the derivatives for f(x)=Cos⁑xf(x) = \operatorname{Cos}x:

Cos⁑(x+h)=Cos⁑xβˆ’Sin⁑xβ‹…hβˆ’Cos⁑x2!h2+Sin⁑x3!h3+…\operatorname{Cos}(x + h) = \operatorname{Cos}x - \operatorname{Sin}x \cdot h - \frac{\operatorname{Cos}x}{2!}h^2 + \frac{\operatorname{Sin}x}{3!}h^3 + \ldots

Step 2: Evaluate Cos⁑(61∘)\operatorname{Cos}(61^\circ)

Here, x=60∘x = 60^\circ and h=1∘h = 1^\circ.
Convert to radians since Taylor expansion uses radians:

  • x=Ο€3x = \frac{\pi}{3}
  • h=Ο€180h = \frac{\pi}{180}

Substitute values into the expanded series:

Cos⁑(61∘)=Cos⁑π3βˆ’Sin⁑π3β‹…Ο€180βˆ’Cos⁑π32!(Ο€180)2+Sin⁑π33!(Ο€180)3+…\operatorname{Cos}(61^\circ) = \operatorname{Cos}\frac{\pi}{3} - \operatorname{Sin}\frac{\pi}{3} \cdot \frac{\pi}{180} - \frac{\operatorname{Cos}\frac{\pi}{3}}{2!} \left(\frac{\pi}{180}\right)^2 + \frac{\operatorname{Sin}\frac{\pi}{3}}{3!} \left(\frac{\pi}{180}\right)^3 + \ldots

Step 3: Substitute Trigonometric Values

From trigonometric identities:

  • Cos⁑π3=12\operatorname{Cos}\frac{\pi}{3} = \frac{1}{2}
  • Sin⁑π3=32\operatorname{Sin}\frac{\pi}{3} = \frac{\sqrt{3}}{2}

Substitute these values:

Cos⁑(61∘)=12βˆ’32β‹…Ο€180βˆ’122!(Ο€180)2+323!(Ο€180)3\operatorname{Cos}(61^\circ) = \frac{1}{2} - \frac{\sqrt{3}}{2} \cdot \frac{\pi}{180} - \frac{\frac{1}{2}}{2!} \left(\frac{\pi}{180}\right)^2 + \frac{\frac{\sqrt{3}}{2}}{3!} \left(\frac{\pi}{180}\right)^3

Step 4: Approximate Terms

Let Ο€180β‰ˆ0.017453\frac{\pi}{180} \approx 0.017453:

  1. First term: 12=0.5\frac{1}{2} = 0.5
  2. Second term: βˆ’32β‹…0.017453β‰ˆβˆ’0.0151-\frac{\sqrt{3}}{2} \cdot 0.017453 \approx -0.0151
  3. Third term: βˆ’122!β‹…(0.017453)2β‰ˆβˆ’0.000076-\frac{\frac{1}{2}}{2!} \cdot (0.017453)^2 \approx -0.000076
  4. Fourth term: 323!β‹…(0.017453)3β‰ˆ0.0000005\frac{\frac{\sqrt{3}}{2}}{3!} \cdot (0.017453)^3 \approx 0.0000005

Add the terms:

Cos⁑(61∘)β‰ˆ0.5βˆ’0.0151βˆ’0.000076+0.0000005β‰ˆ0.4848\operatorname{Cos}(61^\circ) \approx 0.5 - 0.0151 - 0.000076 + 0.0000005 \approx 0.4848

Key Formulas or Methods Used

  1. Taylor Series Expansion:
    f(x+h)=f(x)+fβ€²(x)1!h+fβ€²β€²(x)2!h2+…f(x + h) = f(x) + \frac{f'(x)}{1!}h + \frac{f''(x)}{2!}h^2 + \ldots
  2. Conversion to radians:
    h=1∘=Ο€180β‰ˆ0.017453h = 1^\circ = \frac{\pi}{180} \approx 0.017453
  3. Trigonometric values:
    Cos⁑π3=12,Sin⁑π3=32\operatorname{Cos}\frac{\pi}{3} = \frac{1}{2}, \quad \operatorname{Sin}\frac{\pi}{3} = \frac{\sqrt{3}}{2}

Summary of Steps

  1. Use the Taylor series expansion for Cos⁑(x+h)\operatorname{Cos}(x + h).
  2. Substitute f(x)=Cos⁑xf(x) = \operatorname{Cos}x and its derivatives into the series.
  3. Convert xx and hh to radians.
  4. Substitute known values for Cos⁑π3\operatorname{Cos}\frac{\pi}{3} and Sin⁑π3\operatorname{Sin}\frac{\pi}{3}.
  5. Approximate terms and sum them up to get the result.

Final answer:

Cos⁑(61∘)β‰ˆ0.4848\operatorname{Cos}(61^\circ) \approx 0.4848